
A glue semantics parser and prover

Mark-Matthias Zymla
Moritz Messmer

15/12/2017

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

About

4-week mini project with experts in California (Dick Crouch,
Tracy Holloway King)

GOAL: Implementing a semantic parser based on glue
semantics in Java

Some existing resources:

NLTK computational semantics package (written in Python)
Glue implementation PARC by Richard Crouch and colleagues
(written in Prolog)

→ Served as initial guiding points

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

“[glue semantics] is an approach to the semantic interpretation of
natural language that uses a fragment of linear logic as a deductive

glue for combining together the meanings of words and phrases”
– Crouch & van Genabith (2000)

Lexical entries consist of two elements:

Glue language: Linear logic – can be understood as semantic
types (Curry-Howard-isomorphism)
Meaning language Montague style semantics (but other
formalism are possible)

ex.: λx .sleep(x) : A (B

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

The appeal of linear logic

Linear logic (LL) is a resource-conscious logic
premises, assumptions and conclusions as used in logical
proofs are resources (not truths or facts)

A,A → B,A → C |= A,C vs.A,A (B,A → C 6|= A,C

The syntax of proof systems is not always in one-to-one
correspondence to the underlying proof object

→ LL better suited to describe underlying proof objects

Resource usage occurs in natural language: Words and
phrases correspond to resources

A sentence denotes a successful linear logic proof

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Relevant rules

We use the implicational framgment of linear logic

Introduction rule

[x : A]i
...

f (x) : B
(I ,i

λx .f (x) : A (B

Elimination rule

f : A (B a : A (E
f (a) : B

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Semantic composition as proof

John loves Mary.

Lexical entries:

JJohnK = j : g
JMaryK = m : h
JlovesK = λx .λy .loves(x , y) : g ((h (f)

λx .λy .loves(x , y) : g ((h (f) j : g

λy .loves(j , y) : gh (f m : h

loves(j ,m) : f

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

From syntax to semantics


PRED ’love<John,Mary>’

SUBJ
[
PRED ’John’

]
OBJ

[
PRED ’Mary’

]


λx .λy .loves(x , y) :
↑ .SUBJ ((↑ .OBJ (↑)

j :↑ .SUBJ
m :↑ .OBJ

↑ refers to a specific f-structure node (e.g. ↑ points to the
f-structure of the whole sentence; ↑ .SUBJ points to the
f-structure node of the subject)

Syntactic analysis determines linear logic resources

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

From syntax to semantics

A big dog chases every cat.SUBJ


PRED ’dog’

DET
[
PRED ’a’

]
ADJUNCT

{
PRED ’big’

}



λP.λQ.∃x [P(x) ∧ Q(x)] :
(g (↑ .SUBJ) (((↑ .OBJ (↑) (↑)

λx .dog(x) : g (↑ .SUBJ
λP.λx .big(x) ∧ P(x) : (g (↑ .SUBJ) ((g (↑ .SUBJ)

→ λQ.∃x [(big(x) ∧ dog(x)) ∧ Q(x)] : ((↑ .OBJ (↑) (↑)

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

From syntax to semantics

A big dog chases every cat.OBJ

PRED ’cat’

DET
[
PRED ’every’

]
λP.λQ.∀y [P(y) → Q(y)] :
(h (↑ .OBJ) (((↑ .SUBJ (↑) (↑)

λx .cat(x) : h (↑ .SUBJ
→ λQ.∀y [cat(y) → Q(y)] : ((↑ .SUBJ (↑) (↑)

What happened?
Quantifiers have the template:
(x (RESTR) (((SCOPE (↑) (↑).
The RESTR and SCOPE of a quantifier a determined by the
Syntax.

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Ja big dogK = λQ.∃x [(big(x) ∧ dog(x)) ∧ Q(x)] :
((h (f) (f)

Jevery catK = λQ.∀y [cat(y) → Q(y)] : ((g (f) (f)

JchasesK = λx .λy .chases(x , y) : h ((g (f)

[h]1 h ((g (f)
(E

g (f (g (f) (f
(E

f (I ,1
h (f (h ((f (f)

(E
f

λx .λy .chases(x , y) : h ((g (f) (z) = λy .chases(z , y)

Jevery catK (λy .chases(z , y)) = ∀x [cat(x) → chases(z , y)]

∀x [cat(x) → chases(z , x)]
=(I ,i

λz .∀x [cat(x) → chases(z , x)]

Ja big dogK (J every catK) =
∃y [(big(y) ∧ dog(y)) → ∀x [cat(x) ∧ chases(y , x)]]

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Ja big dogK = λQ.∃x [(big(x) ∧ dog(x)) ∧ Q(x)] :
((h (f) (f)

Jevery catK = λQ.∀y [dog(y) → Q(y)] : ((g (f) (f)

JchasesK = λx .λy .chases(x , y) : h ((g (f)

[g]2
[h]1 h ((g (f)

(E
g (f

(E
f (I ,1

h (f (h (f) (f
(E

f (I ,2
g (f (g (f) (h

(E
f

Homework: Prove that this works on the lambda-side!

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Hepple (1996) Chart prover

Chart parsers store partial results and re-use them to prevent
backtracking

Hepple’s system uses same idea

First step: first-order chart parser without hypothetical
reasoning (no (-introduction and no assumptions)

linear use of resources enforced by using indexes
each premise assigned unique index
when combining premises their index sets are unified
two premises can only be combined when their index sets are
disjoint

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

first-order chart prover pseudo code

Stack A (agenda)
List D (database)
for A contains premises do

pop premise PA

add PA to D
for all Premises PD in D do

if PA and PD combineable and index sets disjoint then
add new combined premise to A

end if
end for

end for
if any PD from D has a full set of indexes it is a valid solution

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

higher-order chart prover

algorithm so far only works for formulas of the form Aa (Bc ,
where a is an atom

higher-order formulas with nested consumers usually require
(-introduction

hypothetical reasoning makes computation very complex

Hepple’s solution: transform the initial (potentially
higher-order) formulas into a set of first-order formulas

nested consumers are ”compiled out” to additional
assumptions:
(a (b) (c ⇒

b[a] (c ; {a}

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

higher-order chart prover

algorithm so far only works for formulas of the form Aa (Bc ,
where a is an atom

higher-order formulas with nested consumers usually require
(-introduction

hypothetical reasoning makes computation very complex

Hepple’s solution: transform the initial (potentially
higher-order) formulas into a set of first-order formulas

nested consumers are ”compiled out” to additional
assumptions:
(a (b) (c ⇒ b[a] (c ; {a}

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

higher-order chart prover

extracted assumptions are marked as such (notated with {})
and assigned a new unique index

formula from which assumption is extracted gets extracted
resource as discharge (notated with [])

when two premises are combined the following rules apply:

if one or both premises contain assumptions, these are added
to the set of assumptions of the combined premise
if a premise contains discharges, the set of assumptions of the
other premise must contain the dischcarged resource
matched assumption and discharge pairs are removed from the
book-keeping

on the meaning side, a compilation step amounts to
functional application with a deliberate ”accidental binding”
of the relevant variable

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

higher-order chart prover

extracted assumptions are marked as such (notated with {})
and assigned a new unique index

formula from which assumption is extracted gets extracted
resource as discharge (notated with [])

when two premises are combined the following rules apply:

if one or both premises contain assumptions, these are added
to the set of assumptions of the combined premise
if a premise contains discharges, the set of assumptions of the
other premise must contain the dischcarged resource
matched assumption and discharge pairs are removed from the
book-keeping

on the meaning side, a compilation step amounts to
functional application with a deliberate ”accidental binding”
of the relevant variable

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

compilation and combination of higher-order formula

(1) Everybody sleeps.

original premises:
g1 (f : λy.sleep(y)
(g2 (H) (H : λP.∀x[person(x) ∧ P(x)]

compiled premises:
g1 (f : λy.sleep(y)
{g2} : v
H[g2] (H : λu.λP.∀x[person(x) ∧ P(x)](λv.u)

H[g2] (H : λu.λP.∀x[person(x) ∧ P(x)](λv.u)

g1 (f : λy.sleep(y) {g2} : v

f {g2} : sleep(v)
[H/f]

f : λP.∀x[person(x) ∧ P(x)](λv.sleep(v))
β-conversion

f : ∀x[person(x) ∧ sleep(x)]

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

pseudo code: higher-order prover

Stack A (agenda)
List D (database)
Solutions S (all premises with full index sets)
for A contains premises do

pop premise PA

add PA to D
for all Premises PD in D do

if PA and PD combineable and index sets disjoint then
if PA and/or PD contain assumptions then

combine sets of assumptions
add new combined premise to A

else if PA or PD contain discharges then
if discharges are a subset of assumptions then

delete ”used” discharges and assumptions
add new combined premise to A

end if
else

no assumptions or discharges; combine premises as usual
end if

end if
end for

end for

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

special case: transforming premises

terms of the form Aa (Bc don’t need compilation, only as
long as B is not left-nested

terms like (2) need to be compiled, even though the algorithm
so far would treat them as first-order

resources may be swapped to derive the equivalent term in (3)

(2) i (((g (H) (H)

(3) (g (H) ((i (H)

(4) {g}
H[g] ((i (H)

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

special case: transforming premises

On the semantic side this amounts to swapping the two outermost
lambdas

(5) i (((g (H) (H) : λP.λQ.∀x[P(x) ∧ Q(x)]

(6) (g (H) ((i (H) : λQ.λP.∀x[P(x) ∧ Q(x)]

(7) {g} : v
H[g] ((i (H) : λu.λQ.λP.∀x[P(x) ∧ Q(x)](λv.u)

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

From dependencies to glue premises

Other than LFG structures, dependency parsers are not
inherently flat.

In LFG we made use of the flat f-structure to determine
relations between syntax and semantics

→ We need to flatten out the dependency structure.

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

from dependencies to glue premises

As a flat structure we use a hashmap with indices as keys.

(0 ran)
(0 nsubj I)
(0 obl 1)
(1 item)
(1 case across)
(1 det this)
(0 obl 2)
(2 Internet)
(2 case on)
(2 det the)

The same process can be conducted on an f-structure.

certain dependencies directly receive a lexical entry, e.g.

nsubj(%%) ∧ nn(%%) → gsubj : λx .%%(x)
if (0 %%) has nsubj(%) → λx .%%(x)
if (0 %%) has nsubj(%) and nobj(%’)→ λx .λy .%%(x , y)

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

from dependencies to glue premises

Determiners

The template for quantifiers is:
(x (RESTR) (((SCOPE (↑) (↑).

The restrictor is always the dependency that governs the
quantifier

The scope is newly instantiated for a quantifier and later
unified with the arguments of the verb.

g: (x (SUBJ) (((SCOPEA (↑) (↑)
h: (x (OBJ) (((SCOPEB (↑) (↑)
g ((h (f): SCOPEA ((SCOPEB (↑)

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Outline

1 About

2 Introduction to glue semantics

3 Hepple-style chart prover
first-order prover
higher-order prover

4 Generating lexical entries

5 Conclusion

About Introduction to glue semantics Hepple-style chart prover Generating lexical entries Conclusion

Conclusion

We presented a semantic parser at the core of which is a chart
parser for linear logic formulas that decomposes higher order
linear logic formulas into first order formulas

We implemented corresponding semantics that can be applied
to natural language

We implemented a small system for translating dependency
parses into semantic premises that can be proven/composed
with the parser

Time for a DEMO

	About
	Introduction to glue semantics
	Hepple-style chart prover
	first-order prover
	higher-order prover

	Generating lexical entries
	Conclusion

