Revisiting really Positive Questions and High Negation Questions Maribel Romero
 University of Konstanz

Workshop on Non-canonical Questions
University of Toronto, May 17-18, 2023

1. Introduction

■ Several polar question (PQ) forms:
(1) Is Jane coming?
(2) Is Jane not coming?
(3) Isn't Jane coming?
(4) a. Is Jane really coming?
b. IS Jane coming?

Positive Question PosQ
Low Negation Question LoNQ
High Negation Question HiNQ
really Positive Question really-PosQ
Positive Question with Focus on tensed verb \mathbb{F}-PosQ
(5) Original bias (OB) of the Speaker for a proposition p: (Domaneschi et al. 2017) Belief or expectation of the speaker that p is true, based on his epistemic state prior to the current situational context and conversational exchange.
(6) [Scenario: An immigration officer in Canada welcomes the next traveler, about whose citizenship he has no previous expectations (or contextual cues), and asks:]
a. Are you a Canadian citizen?
PosQ
$w \rightarrow$ No bias for 'You are not Canadian'
b. \# Are you really a Canadian citizen? really-PosQ
m Bias for 'You are not Canadian'
(7) Scenario: S is in charge of supplying the non-alcoholic beverages for a party. S is going through the list of guests. S has no previous belief or expectation about their drinking habits.
(Shortened from Romero \& Han 2004)
A: Jane and Mary do not drink.
S: a. OK. What about John? Does he not drink?
LoNQ
$w \rightarrow$ No bias for 'John drinks'
b. \# Ok. What about John? Doesn't he drink? HiNQ
$m \rightarrow$ Bias for 'John drinks'

Zooming into really-PosQ:
Really-PosQ are felicitous in contradiction scenarios:
(8) A: We can't leave yet. We need to wait for Jane.

S : Is she really coming?

■ Zooming into HiNQs:

- Ladd's (1981) intuitive ambiguity:

Ladd argues that, while expressing original speaker bias for p , a HiNQ [n ' $t p$?] is ambiguous between:

- an outer-negation reading double-checking p: (9) \rightarrow disambiguated via PPIs like some and too
- an inner-negation reading double-checking $\neg \mathrm{p}$: (10) \rightarrow disambiguated via NPIs like any
(9) A: You guys must be starving. You want to get something to eat? (Ladd 1981)

S: Yeah, isn't there a (/some) vegetarian restaurant around here? Outer-HiNQ
(10) S: I'd like to take you guys out to dinner while I'm here - we'd have time to go somewhere around here before the evening session tonight, don't you think?
A: I guess, but there's not really any place to go in Hyde Park. (Ladd 1981)
S: Oh, really, isn't there a (/any) vegetarian restaurant around here? Inner-HiNQ

- Outer-HiNQs are felicitous in suggestion scenarios like (9) and in contradiction scenarios like (11)
(11) A: Ok, now that Stephan has come, we are all here. Let's go!

S: Isn't Jane coming too?

DATA ON BIAS			
	Existence?	Direction	Scenarios
Really-PosQ	yes	for $\neg \mathrm{p}$	contradiction
Outer-HiNQ	yes	for p	contradiction and suggestion

- Theoretical approaches:
- Line A: Expressed proposition line
van Rooij and Šafářová (2003), AnderBois (2011, 2019), Northrup (2014)
- Line B: Verum line

Romero \& Han (2004), Romero (2006), Repp (2006, 2013), Romero (2015), Frana \& Rawlins (2019), Jeong (2021)

- Line C: Speech Act line

Reese (2006, 2007), Asher \& Reese (2007); Krifka (2012/2017, 2015), Goodhue (2018, 2022a,b)

- Converging picture in the literature on HiNQs in their outer negation p-checking reading:
(12) Outer-HiNQs:
a. [Q [$\Sigma_{\text {HiNeg }}$ [SentenceRadical ...]]]
Line A (An19)
b. [Q [FALSUM HiNeg [sentenceRadical]]] $\left.^{2}\right]$
Line B (Re13, Ro15, Fr\&Ra19)
c. [Q [\neg HiNeg ASSERT [SentenceRadical ...]]]
Line C (Go22a)
- Three main points of disagreement in the literature:
I. Status of Ladd’s (1981) inner-negation \neg p-checking interpretation of HiNQs.
II. Meaning dimension to which the operator contributes its meaning.
III. Procedure to derive the existence and direction of the original speaker bias.
- Aim of the present talk:

This talk revisits really-PosQs and HiNQs in order to...
Goal (1): to advance the VERUM/FALSUM line in the Repp (2013) / Romero (2015): Recasting VERUM/FALSUM in Murray's (2014) framework Update with Modal Centering for evidentials
Goal (2): to evaluate recent competing analyses wrt issues II and III: extension of Repp (2013) / Romero (2015) proposed here vs. Frana \& Rawlins (2019) vs. Goodhue (2022a)

- Roadmap
§2 VERUM/FALSUM analysis in Repp (2013) / Romero (2015)
§3 Murray's (2014) framework for evidentials
§4 Proposal: Recasting VERUM/FALSUM in Murray's (2014) framework
§5 Evaluating the proposed VERUM/FALSUM account
§6 Evaluating the VERUM/FALSUM account in Frana \& Rawlins (2019)
§7 Evaluating the Speech Act account in Goodhue (2022a)
§8 Conclusions

2. Verum/Falsum analysis in Repp (2013) / Romero (2015)

- Romero \& Han (2004) argue that really and high negation introduce a VERUM operator. Based on insights from Höhle (1992), they define it as in (13).
At that point, the contribution of the operator is treated as an at-issue entailment.

$$
\begin{align*}
\llbracket V E R U M \rrbracket & =\quad \lambda p_{<s, t} \cdot \lambda w_{0} . \forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{x}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w} \prime \in \operatorname{Conv}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p} \in \mathrm{CG}_{\mathrm{w}}\right] \tag{13}\\
& =\quad \text { "x is sure that, in all the worlds satisfying x's conversational } \\
& \text { goals, } \mathrm{p} \text { is added to the CG" }
\end{align*}
$$

- Three empirical arguments in the literature for not treating the contribution of the operator as an at-issue entailment:
- Challengeability (Frana \& Rawlins 2019)
- Answer pattern (Romero 2006, Gutzmann \& Castroviejo-Miró 2011)
- Conditional antecedents (Romero 2015)

■ Repp (2013) and Romero (2015): non-at-issue contribution of VERUM and FALSUM
(14) VERUM:
a. At-issue content: $\quad \lambda p_{\text {s, }, \downarrow} p$
b. CG-man. content: $\quad \lambda \mathrm{p}_{\mathrm{s}, \mathrm{p}, ~} \cdot \lambda \mathrm{w}_{0} . \forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{x}}\left(\mathrm{w}_{0}\right) \quad \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p} \in \mathrm{CG}_{\mathrm{w}^{\prime}}\right]$ $\operatorname{FORSURE}_{\mathrm{x}}(\mathrm{p} \in \mathrm{CG}) \quad$ [Abbreviation]
(15) FALSUM:
a. At-issue content: $\quad \lambda p_{<s, \downarrow} \neg p$
b. CG-man. content: $\quad \lambda \mathrm{p}_{<\mathrm{s}, \stackrel{\rightharpoonup}{ } \cdot \lambda \mathrm{w}_{0} . \forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{x}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p} \notin \mathrm{CG}_{\mathrm{w}^{\prime}}\right]}$
ForSure $_{\mathrm{x}}(\mathrm{p} \notin \mathrm{CG})$
[Abbreviation]

Application to declaratives:
(16) a. Tom really is tired.
b. FORCE $_{\text {Decl }}$ [VERUM [Tom is tired]]
c. Meaning: at-issue: Tom is tired
non-at-issue: FORSURE $_{a}$ (Tom is tired $\in \mathrm{CG}$)
(17) A: Tom really is tired.

S: That can't be true. $/$ You are wrong. $\quad=\neg(\mathrm{T}$ is tired $) \quad \neq \neg \operatorname{ForSure}_{\mathrm{a}}(\mathrm{T}$ is tired $)$
(18) A: He found something.
(Szabolcsi 2004)
S: Wrong! He didn’t find something. $\checkmark \neg>\exists$
c. [FORCE ${ }_{\text {Decl }}$ [FALSUM [he found something]]
d. Meaning: at-issue: $\quad \neg$ (He found something) non-at-issue: FORSURE $_{a}(\mathrm{He}$ found something $\notin \mathrm{CG})$

Application to polar questions:
(19) Q-morpheme:
a. At-issue content: $\quad \lambda p_{<s, \downarrow} \cdot\{p, \neg p\}$
b. CG-management content: $\quad \lambda p_{<s, \downarrow} .\{p, \neg p\}$

- Really-PosQ:
(20) a. Is Jane really coming?
b. LF: [Q [VERUM [Jane is coming]]]
(21) a. At-issue content: $\quad\{$ Jane is coming, \neg (Jane is coming) \}
b. CG-man. content: $\left\{\operatorname{FORSURE}_{x}(J a n e ~ i s ~ c o m i n g ~ \in C G), ~\right.$ \neg FORSURE $_{x}$ (Jane is coming $\in \mathrm{CG}$) $\}$
(22) A: Is Jane really coming?

S: Yes. $\quad \approx$ Jane is coming $\quad \approx \operatorname{ForSurE}_{x}\left(J_{\text {ane is coming }} \in \mathrm{CG}\right)$
S': No. $\quad=\neg($ Jane is coming $) \neq \neg \operatorname{ForSure}_{x}($ Jane is coming \in CG $)$

- Outer HiNQ:
(23) a. Isn't Jane coming too?
b. LF: [Q [FALSUM [Jane is coming]]]
a. At-issue content: $\quad\{\neg$ (Jane is coming), $\neg \neg$ (Jane is coming) $\}$
That is: $\{$ Jane is coming, $\neg($ Jane is coming) $\}$
b. CG-man. content: $\left\{\operatorname{FORSURE}_{\mathrm{x}}\left(\mathrm{Jane}^{\text {is coming } \notin \mathrm{CG}) \text {, }}\right.\right.$ \neg ForSure $_{x}$ (Jane is coming $\notin \mathrm{CG}$) $\}$
(25) A: Isn't Jane coming too?

S: Yes. $\quad=$ Jane is coming $\quad \neq \neg \operatorname{ForSurE}_{x}(J a n e$ is coming \notin CG)
S': No. $\quad \approx \neg($ Jane is coming $) \quad \approx \operatorname{ForSure}_{x}(J a n e ~ i s ~ c o m i n g ~ \# C G) ~$

- Application to conditional antecedents:

High negation is licit in subjunctive antecedents when interpreted counterfactually but illicit in Anderson-style scenarios (Schwarz \& Bhatt 2006, Ippolito \& Su 2009): (26)-(27).
Same with conditional antecedents containing (VERUM-)really (Romero 2015).
(26) If there hadn' $\mathbf{t}_{\text {High }}$ been some $_{\text {PPI }}$ oil in the tank, the furnace would have exploded.
(27) \# If there hadn' $\mathbf{t}_{\text {High }}$ been some $_{\text {PPI }}$ oil in the tank, the furnace would have made exactly the noise that it in fact did. So, it's likely that the tank was empty.
(28) [CP If [FALSUM [iP there had been some oil in the tank]]] then q
a. $=\lambda \mathrm{w}_{0} . \forall \mathrm{w} \in \operatorname{Simw}_{0}\left(\lambda \mathrm{w}^{\prime}\right.$. there was oil in talk at $\left.\mathrm{w}^{\prime}\right): \mathrm{q}(\mathrm{w})$
b. $\neq \lambda \mathrm{w}_{0} . \forall \mathrm{w} \in \operatorname{Simw}_{0}\left(\lambda \mathrm{w}^{\prime} . \operatorname{FORSURE}_{\mathrm{x}}\left(\mathrm{w}^{\prime}\right)(\right.$ there was oil in tank $\left.\notin \mathrm{CG})\right): \mathrm{q}(\mathrm{w})$
a. At-issue content: $\quad \lambda \mathrm{w} . \neg$ (there was oil in tank at w)
b. Raised QUD:
$\left\{\lambda w . \operatorname{ForSure}_{x}(\mathrm{w})\right.$ (there was oil in tank $\left.\notin \mathrm{CG}\right)$, $\lambda \mathrm{w} . \neg \operatorname{FORSURE}_{\mathrm{x}}(\mathrm{w})$ (there was oil in tank $\left.\left.\notin \mathrm{CG}\right)\right\}$

DATA ON MEANING DIMENSION			
	Challengeability	Answer pattern	Conditional antecedents
Really	not directly	yes $=\mathrm{p}, \mathrm{no}=\neg \mathrm{p}$	no semantic embedding
High negation	not directly	yes $=\mathrm{p}, \mathrm{no}=\neg \mathrm{p}$	no semantic embedding

- Interestingly, VERUM/FALSUM share these characteristics with evidentials ${ }^{1}$

This takes us to our goal (1):
Recasting VERUM/FALSUM in a general theory of evidentials

[^0]
3. A framework for evidentials (and alike): Murray (2014)

Core data:
(30) É-hó’tàhéva- \varnothing Sandy (\# ... but the truth is that she didn't win) 3-win-DIR Sandy
'Sandy won (I witnessed).'
$w \rightarrow$ Speaker proposes to update the current C(ontext) S(et) p_{0} with q (=Sandy won).
(31) É-hó’táhéva-sestse Sandy ($\checkmark \ldots$ but I was there and she didn’t.)

3-win-RPT Sandy
'Sandy won (I witnessed).'
$w \rightarrow$ Speaker does not propose to update the current CS po with q (=Sandy won).
(32) Floyd won the race, I hear.
$m \rightarrow$ Speaker proposes to update the current CS p_{0} with $\diamond q$ ($=$ It is (at least) possible that Sandy won).

- Three core components:
- at-issue content q: it introduces a propositional discourse referent dref;

Speaker proposes to update the CS with (some version of) it.

- non-at-issue content q : it does not introduce a propositional discourse referent;
it directly updates the CS.
crucially, it determines the argument of the illocutionary force.
- illocutionary force: \quad Force $_{\text {Declarative }}(\mathrm{r}) \quad \Rightarrow$ intersect proposition r with CS

Force $_{\text {Interrogative }}(\mathrm{r}) \quad \Rightarrow$ partition the CS

■ Case 1: Direct evidential in Cheyenne [[Sandy won] DIR].
$w \rightarrow$ Speaker proposes to update the current CS po with q (=Sandy won).

Figure 1 Updates for (11): Cheyenne direct evidential

Case 2: Reportative evidential in Cheyenne
(34) [[Sandy won] RPT].
$w \rightarrow$ Speaker does not propose to update the current CS p_{0} with q (=Sandy won).

Figure 3 Updates for (14): Cheyenne reportative evidential

■ Case 3: Slifting in English
(35) Floyd won the race, I hear.
$w \rightarrow$ Speaker proposes to update the current CS p_{0} with $\diamond q$ ($=$ It is (at least) possible that Sandy won).

Figure 5 Updates for (20): English evidential parentheticals

See Appendix for formalization in the framework Update with Modal Centering UC_{ω}.

4. Proposal: Recasting Verum/falsum in Murray's (2014) framework

- In this section, we propose to recast Repp's (2013) and Romero's (2015) VERUM/FALSUM approach within Murray's discourse framework for evidentials.

■ Verum in declaratives:
(36) VERUM [q]:
a. At-issue content:
q
b. Evidential non-at-issue content:
$\operatorname{FORSURE}_{\mathrm{x}}(\mathrm{q} \in \mathrm{CG})$
[Abbreviation]
(37) Sandy really won.

LF: [FORCEDecl [VERUM [Sandy won]]]

- FALSUM in declaratives:
(38) FALSUM [q]:
a. At-issue content: q
b. Evidential non-at-issue content: $\operatorname{FORSURE}_{x}(\mathrm{q} \notin \mathrm{CG})$
[Abbreviation]
(39) (Wrong!) Sandy didn't win (some race).

LF: [FORCE Decl $^{\text {[FALSUM [Sandy won]]] }}$

- Evidentials in interrogatives:

The evidential and the Q-operator may interact in different ways:

- Quechua's reportative evidential RPT:
(40) A to B: How are you?
(Matthewson et al. 2007)
C to B: Imayna-s ka-sha-nki
Know-PRT be-PROG-2
'(She says) 'How are you?' $\quad \rightarrow$ Repeat Question
(41) a. [RPT [FORCEInterr [q]]]
b. 'It has been said 'How are you?'"
- Cheyenne's reportative evidential RPT (cf. German wohl in Eckardt 2020):
(42) Mó=é-hó'taheva-sestse Sandy?
(Murray 2010)
y/n=3-win-RPT.3sg Sandy
'Given what you heard, did Sandy win?'
a. [FORCE ${ }_{\text {Interr }}[$ RPT [q]]]
b. \{ info state with: at-issue: \quad q- at-issue: \quad-q non-at-issue: \quad RPT(i,q)
non-at-issue: $\operatorname{RPT}(\mathrm{i}, \neg \mathrm{q})$

■ VERUM/FALSUM do not seem to interact with the Q-operator in either of those two ways:
(44) Did Sandy really win?
a. \neq [RPT [$\left.\operatorname{FORCE}_{\text {Interr }}[\mathrm{q}]\right]$]
b. \neq ' i is sure that, in all the worlds satisfying i 's conversational goals, the issue/question $\{q, \neg q\}$ has been asked.'
a. $\neq\left[\operatorname{FORCE}_{\text {Interr }}[\operatorname{RPT}[q]]\right]$
b. $\neq\left\{\begin{array}{l}\text { info state with: } \\ \text { at-issue. }\end{array}\right\}$
at-issue: ...
non-at-issue: $\operatorname{FORSURE}(\mathrm{i}, \mathrm{q})$
non-at-issue: $\operatorname{FORSURE}(i, \neg q)$

- Idea:

VERUM/FALSUM represent a third type of interaction with the Q-operator:
a. [FORCE Interr $_{\text {[VERUM/FALSUM [q]]] }}$
b. \{ info state with: \quad info state with: \} at-issue: ... at-issue: ... non-at-issue: FORSURE($1, \ldots$) non-at-issue: $\neg \operatorname{FORSURE}(i, \ldots)$

- VERUM in really-PosQs:
(48) a. Did Sandy really win?
b. [Q/FORCE Interr [VERUM [Sandy won]]]
c. \{ info state with at-issue: $\quad q$
non-at-issue: FORSURE(i,q $\in C G$)
info state with at-issue: non-at-issue: \neg ForSURE(i,q \in CG)

■ Falsum in outer-HiNQs:
(49)
a. Didn't Sandy win (too)?
b. LF: [Q/FORCEInterr [FALSUM [Sandy won]]]
c. \{ info state with
at-issue: $\quad \neg q$
non-at-issue: FORSURE(i,q $\notin C G)$
info state with \} at-issue: $\quad \rightarrow q-(/ \diamond \neg q)$ non-at-issue: \neg FORSURE(i,q $\notin \mathrm{CG})$

For a formalization in the framework Update with Modal Centering UC_{ω}, see Appendix.

We come now to our goal (2):
Evaluating current approaches wrt open issues II (meaning dimension effects) and III (existence and direction of the bias)

5. Evaluating the proposed VERUM/FALSUM account

5.1. Meaning dimension effects

- Challengeability

As at-issue content, q is proposed to be added to the CS. Such a proposal can be directly challenged.
As non-at-issue content, FORSURE(i,...q...) is directly added to the CS. Such a proposal cannot be challenged directly (though it can indirectly).

- Answer pattern (see Goodhue 2022a)

Yes- and no-answers affirm or negate a propositional dref (Krifka 2013).
Since the at-issue content q introduces a dref, yes and no can affirm it and negate it.
Since the non-at-issue content FORSURE(i,...q...) does not introduce a dref, yes and no cannot affirm or negate this content.

- Conditional antecedents

Since at-issue content semantically embeds under if but non-at-issue content (typically) ${ }^{2}$ does not, the semantic content of the $i f$-clause concerns q and not $\operatorname{FORSURE}(\mathrm{i}, \ldots \mathrm{q} . .$.

5.2. Existence and direction of the bias

- Existence of the bias à la Romero \& Han (2004):
(50) Principle of Economy: Do not use a meta-conversational move / very-high certainty evidential unless necessary (to resolve epistemic conflict or to ensure Quality).
\Rightarrow Can this be derived from more general principles (cf. precision level with degree
expressions)?

[^1]- Direction of the bias and scenarios as in Romero \& Han (2004): ${ }^{3}$
a. Did Sandy really win?
b. $\{$ info state with at-issue: $\quad q$ non-at-issue: $\operatorname{FORSURE}(\mathrm{i}, \mathrm{q} \in \mathrm{CG})$)
info state with \}
at-issue: -q
non-at-issue: \neg FORSURE(i,q $\in \mathrm{CG})$)

Intent of really-PosQ:
"Are you sure we should add to CG that Jane is coming?"
"Do you have complete evidence that p ?"
"Can you provide info -and, if so, what info- that would make me conclude p?"
(53) Intent of really-PosQ in a contradiction scenario:
a. \# Given that I assume p and that you implied $\neg \mathrm{p}$, can you provide information and, if so, what information - that would make me conclude p ?
b. \checkmark Given that \underline{I} assume $\neg p$ and that you implied p, can you provide information and, if so, what information - that would make me conclude p?
a. Didn't Sandy win (too)?
b. $\left\{\begin{array}{l}\text { info state with } \\ \text { at-issue: } \quad \neg \mathrm{q} \\ \text { non-at-issue: } \\ \text { FORSURE }(\mathrm{i}, \mathrm{q} \notin \mathrm{CG}))\end{array}\right.$, ,
info state with
at-issue: $\quad \square \mathrm{q}$
non-at-issue: $\neg \operatorname{FORSURE}(\mathrm{i}, \mathrm{q} \notin \mathrm{CG})$)

Intent of an outer-HiNQ:
"Are you sure we should not add to CG that Jane is coming?"
"Do you have any (strong or weak) doubts about p ?"
"Can you provide information -and, if so, what info- that would make me doubt p ?"
(56) Intent of an outer-HiNQ in a contradiction scenario:
a. \checkmark Given that I assume p and that you implied $\neg \mathrm{p}$, can you provide information and, if so, what information - that would make me doubt p ?
b. \# Given that I assume $\neg \mathrm{p}$ and that you implied p , can you provide information and, if so, what information - that would make me doubt p ?
(57) Intent of an outer-HiNQ in a suggestion scenario:
a. \checkmark Given that I assume p, that you do not know any answer to R and that p is a possible answer to R, can you provide information - and, if so, what information - that would make me doubt p and would prevent us from adding p to CG ?
b. \# Given that I assume \neg p, that you do not know any answer to R and that $\neg p$ is a possible answer to R, can you provide information - and, if so, what information - that would make me doubt p and would prevent us from adding p to CG?
\Rightarrow This correctly derives the direction of the bias in the relevant scenarios:
[really p?] original speaker bias for $\neg \mathrm{p} \quad$ in contradiction scenarios
[n't p (too)?] original speaker bias for p in contradiction scenarios and in suggestion scenarios

[^2]
6．Evaluating the verum／Falsum account in Frana \＆Rawlins（2019）

－The authors follow Repp（2013）and Romero（2015）in taking the contribution of VERUM／FALSUM to be non－at－issue．
Based on data like（58），which show presupposition－like projection－namely，filtering－，they tentatively propose to treat VERUM／FALSUM＇s contribution as a presupposition：（59）－（60）．${ }^{4}$
（58）A：It might rain later；you should bring a rain jacket．
S ：If it rains，won＇t the party be indoors？$\quad \Rightarrow \quad[I f ~ r$, then［Q［FALSUM p］］］
（59）【VERUM】 $=\lambda p_{<s, \downarrow} . \mathrm{p}$
Defined only if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{x}}\left(\mathrm{w}_{\mathrm{o}}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p} \in \mathrm{CG}_{\mathrm{w}^{\prime}}\right]$
（60）【FALSUM】 $=\lambda p_{<s, t\rangle} p$
Defined only if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{x}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p} \notin \mathrm{CG}_{\mathrm{w}}{ }^{\prime}\right]$
－The authors emphasize the similarity between VERUM／FALSUM and evidentials．
\Rightarrow Very important connection，which has inspired the proposal above．
－Representation of really－PosQ：
（61）Are you really going（to the party）？
（62）$[\mathrm{Q}[$ VERUM［you are going $]] \rrbracket=\{$ you are going，$\neg($ you are going $)\}$
Defined only if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{A}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{A}}(\mathrm{w})$［ you are going $\in \mathrm{CG}_{\mathrm{w}^{\prime}}$ ］

■ Representation of outer－NiNQ：
（63）Aren＇t you going out（too）？
（64）$\llbracket \mathrm{Q}[$ FALSUM $[$ you are going out $]] \rrbracket=\{$ you are going out，\neg（you are going out）$\}$ Defined if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{A}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{A}}(\mathrm{w})$［ you are going out $\notin \mathrm{CG}_{\mathrm{w}^{\prime}}$ ］

[^3]
6.1. Meaning dimension effects

- Since VERUM/FALSUM's contribution is non-at-issue, the dimension effects are derived as we saw above:
- Challengeability
- Answer pattern
- Conditional antecedents

■ Note, though, that (at least) some evidential-like expressions also show parallel presupposition projection behavior in the same environment: e.g. German wohl in (65). This may mean that (at least) some evidentials are presuppositional or that the non-at-issue behavior of evidentials is (at least) partly projective. More research needed!
(65) Wenn Peter nicht in seinem Buero ist, ist er wohl im Fitness Studio.

If Peter not in his office is, is he woHL in fitness gym
'If Peter is not in his office, he probably/wOHL is at the gym.'

$$
\Rightarrow[\text { If } \mathrm{r} \text {, then }[\text { wOHL } \mathrm{p}]]
$$

- Potential problem

Given the predicted semantics in (67), sentence (66S) presupposes that the information (68a) is already in the CG and asks the Addressee to resolve the issue in (68b). But this issue is already resolved (by virtue of Epi being reflexive)! In other words, this set-up violates Buering's (2003) interrogativity principle in (69):
(66) A: I am going to the party.

S: Are you really going?
(67) [Q [VERUM [you are going]]] = \{ you are going, \neg (you are going) $\}$ Defined only if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{A}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{A}}(\mathrm{w})$ [you are going $\in \mathrm{CG}_{\mathrm{w}^{\prime}}$]
(68) a. Already in CG:
$\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{A}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{A}}(\mathrm{w})$ [you are going $\in \mathrm{CG}_{\mathrm{w}^{\prime}}$]
b. Partition induced, with the illocutionary relation added in blue for each cell if chosen:
$\left\{\forall \mathrm{w} \in \operatorname{Conv}_{\mathrm{A}}\left(\mathrm{w}_{0}\right)\right.$ [you are going $\left.\in \mathrm{CG}_{\mathrm{w}}\right], \forall \mathrm{w} \in \operatorname{Conv}_{\mathrm{A}}\left(\mathrm{w}_{0}\right)\left[\neg(\right.$ you are going $\left.\left.) \in \mathrm{CG}_{\mathrm{w}}\right]\right\}$
(69) Interrogativity Principle:
(Büring 2003)
Ask a question Q only if the context set c does not entail a complete answer to Q .

[^4]
6.2. Existence and direction of the bias

Existence of the bias as Romero \& Han (2004):
(70) Principle of Economy: Do not use a meta-conversational move unless necessary (to resolve epistemic conflict or to ensure Quality).
\Rightarrow Can this be derived from more general principles?
[Inherited from Romero \& Han 2004]

- Direction of the bias and scenarios:

FALSUM in outer-HiNQs allows, illustrated again in (71)-(72), allows for two possibilities:
(i) Addressee is sure that $\neg \mathrm{p}$ should be added to CG.
(ii) Addressee has not taken a stance towards p , ie, she is neutral wrt p
(71) Aren't you going out (too)?
(72) $\llbracket \mathrm{Q}[$ FALSUM $[$ you are going out $]] \rrbracket=\{$ you are going out, \neg (you are going out) $\}$ Defined if $\forall \mathrm{w} \in \operatorname{Epi}_{\mathrm{A}}\left(\mathrm{w}_{0}\right) \forall \mathrm{w}^{\prime} \in \operatorname{Conv}_{\mathrm{A}}(\mathrm{w})$ [you are going out $\notin \mathrm{CG}_{\mathrm{w}^{\prime}}$]

- Possibility (i):
contradiction scenarios
A indicated that A has evidence for $\neg \mathrm{p}$.
S has a bias (towards p or towards $\neg p$) leading to a quality dilemma.
To have a dilemma, S's bias must be contrary to H's position, that is, it must be for \mathbf{p}.
- Possibility (ii):
suggestion scenarios
A took no stance about $\mathrm{p} / \neg \mathrm{p}$.
S has a bias (towards p or towards $\neg \mathrm{p}$) leading to a quality dilemma.
To have a dilemma, ...???...
\Rightarrow While the correct direction of the bias is secured in contradiction scenarios, it is not clear how it is derived in suggestion scenarios.

7. Evaluating the Speech Act account in Goodhue (2022a)

Key to this account is the operator ASSERT: ${ }^{5}$ (73)
Crucially, the modal component is contributed to the at-issue content.

$$
\begin{align*}
\llbracket \text { ASSERT】 } & =\lambda \mathrm{p}_{<\mathrm{s}, \mathrm{D}} \cdot \lambda \mathrm{w} \cdot \forall \mathrm{w}^{\prime} \in \operatorname{Dox}_{\mathrm{x}}(\mathrm{w})\left[\mathrm{p}\left(\mathrm{w}^{\prime}\right)\right] \tag{73}\\
& =\lambda \mathrm{p}_{<\mathrm{s}, \mathrm{D}} \cdot \square_{\mathrm{x}} \mathrm{p}
\end{align*}
$$

[Abbreviation]

■ (Outer-)HiNQs like (74) are argued to have the structure in (75), with negation scoping over the speech act operator ASSERT. This leads to the partition in (76):
(74) Didn't Jane eat?
(75) [Q [\neg ASSERT [Jane ate]]]
(76)
$\left\{\neg \square_{\mathrm{x}}\right.$ Jane ate, \square_{x} Jane ate $\}$

7.1. Meaning dimension effects

■ Reponse pattern:
Yes- and no-answers affirm or negate a propositional dref (Krifka 2013).
Since the at-issue content q introduces a dref, yes and no can affirm it and negate it.
But the content $\neg \square_{\mathrm{x}} \mathrm{p}$ and $\square_{\mathrm{x}} \mathrm{p}$, despite being at-issue, introduces no dref, hence $y e s$ and no cannot affirm or negate this content.

■ Challengeability:
If can be argued that challengeability involves some kind of anaphora, same as above.

- Conditional antecedents:

Here we have no anaphora involved, just the clause including high negation. So the predicted representation for (77) would be (78):
(77) If there hadn' $\mathbf{t}_{\text {High }}$ been some erpi oil in the tank, the furnace would have exploded.
(78) [CP If [\neg ASSERT [ip there had been some oil in the tank]]] then q
a. $\lambda \mathrm{w}_{0} . \forall \mathrm{w} \in \operatorname{Simw}_{0}(\neg \square$ (there was oil in tank)) : $\mathrm{q}(\mathrm{w})$
b. Paraphrase: "In all counterfactual worlds (max. similar to w_{0}) in which x lacks full certainty on there being oil in the tank, q is true" \Rightarrow Wrong truth conditions!
\Rightarrow The at-issue treatment of the operator can be maintained for phenomena that
involve a dref, but it leads to incorrect truth conditions in constructions when the
clause containing high negation is directly embedded under another operator.

[^5]
7.2. Existence and direction of the bias

■ Goodhue (2022a) attempts to derive the existence of original speaker bias in HiNQs from the competition with PosQs.
\Rightarrow Important attempt to derive the existence of the bias from general pragmatic principles.

- Notion of bias and ignorance:
(79) S is biased for $\mathrm{p} \quad \Leftrightarrow \quad \square_{\mathrm{s}} \mathrm{p}$
(80) $\quad \mathrm{S}$ is ignorant of whether p or $\neg \mathrm{p} \quad \Leftrightarrow \quad \neg \square_{\mathrm{s}} \mathrm{p} \wedge \neg \square_{\mathrm{S}} \neg \mathrm{p}$
- Steps:
(1) Premise 1:

If S is ignorant of whether p or $\neg p$ (and the truth of $p / \neg p$ is relevant), S 's goal is to gain information.
(2) Premise 2:

If S wants to gain information, S will use the more informative question strategy.
(3) Premise 3: PosQs are more informative than their HiNQs counterparts:
(81) $\quad Q_{1}$ is more informative than Q_{2} iff the following two conditions are satisfied:
a. $\exists p \in Q_{1}\left[\exists p^{\prime} \in Q_{2}\left[p \subset p^{\prime}\right]\right]$
b. $\quad \forall p \in Q_{1}\left[\neg \exists p^{\prime} \in Q_{2}\left[p^{\prime} \subset p\right]\right]$
(4) Conclusion: If S is ignorant of whether p or $\neg p$, S will use the more informative PosQ.
That is: \quad If S uses the less informative HiNQ , then S is not ignorant of whether p or \neg p. $\quad \Rightarrow$ Existence of bias

However: If instead of Premise 1 above we take Premise 1^{\prime} below -which also feels truethe same derivation steps would take us to the Conclusion' below:
(1) Premise 1':

If S is biased for p or for $\neg p$ but not certain about it (and the truth of $p / \neg p$ is relevant), S's goal is to gain information.
(4) Conclusion': If S is biased for p or for $\neg \mathrm{p}$ but not certain about it, S will use the more informative PosQ.
That is: If S uses the less informative HiNQ, then it is not the case that S is biased for p or for $\neg \mathrm{p}$ but not certain about it.

Putting the two derivation together:
(4) Conclusion: If S uses the less informative HiNQ, then S is certain about p or about $\neg \mathrm{p}$.
\Rightarrow Wrong empirical result: the proposed inference procedure derives the existence of speaker certainty (for p or for $\neg \mathrm{p}$) in HiNQs, not the existence of (just) bias.

8. Conclusions

- A proposal has been made to recast the VERUM/FALSUM account in Repp (2013) and Romero (2014) within Murray's (2014) general framework for universals.
- Three recent competing approaches have been evaluated wrt (II) meaning dimension effects and (III) the derivation of the existence and direction of the bias:
- Current extension of Repp/Romero's VERUM/FALSUM approach
- Frana \& Rawlins' (2019) presuppositional VERUM/FALSUM approach
- Goodhue (2022a) speech act approach

References

Anderbois S. 2011. Issues and Alternatives. Dissertation, UC Santa Cruz
AnderBois S. 2019. Negation, alternatives, and negative polar questions in American English. In Questions in discourse, eds. K von Heusinger, E Onea, M Zimmerman, 118-171. Leiden: Brill
Asher N, Reese B. 2007. Intonation and Discourse: Biased Questions. In Interdisciplinary Studies on Information Structure 8, ed. S Ishihara, S Jannedy, A Schwarz, pp. 1-38. Potsdam: University of Potsdam
Büring D. 2003. On D-trees, beans, and B-accents, Linguistics and Philosophy 26:511-545
Büring D, Gunlogson C. 2000. Aren't Positive and Negative Polar Questions the Same?. Ms. UC Santa Cruz
Ciardelli I, Groenendijk J, Roelofsen F. 2013. Inquisitive semantics: A new notion of meaning, Language and Linguistics Compass 7(9):459-476
Eckardt R. 2020. Conjectural questions: The case of German verb-final wohl questions, Semantics \& Pragmatics 13:1-54
Frana I, Rawlins K. 2019. Attitudes in discourse: Italian polar questions and the particel mica, Semantics and Pragmatics 12(16):1-48
Goodhue D. 2018. On Asking and Answering Biased Polar Questions. Dissertation, McGill University
Goodhue D. 2019. High negation questions and epistemic bias. In Proceedings of Sinn und Bedeutung 23, Vol. 1, ed. MT Espinal et al., pp. 469-485. Barcelona: UAB
Goodhue D. 2022a. Isn't there more than one than one way to bias a polar question?, Natural

Goodhue D. 2022b. Bias in high negation questions as a quantity implicature in commitment space semantics. In Proceedings of the $23^{\text {rd }}$ Amsterdam Colloquium, ed. M Degano, T Roberts, G Sbardolino, M Schouwstra, pp. 106-112. Amsterdam: ILLC
Gutzmann D, Castroviejo-Miró E. 2011. The dimensions of Verum. In Empirical Issues in Syntax and Semantics 8, ed. O. Bonami, P Cabredo Hofherr, pp. 143-165. http://www.cssp.cnrs.fr
Höhle T. 1992. Über Verum Fockus im Deutschen, Linguistische Berichte Sonderhefte 4:112141
Ippolito M, Su J. 2009. Counterfactuals, negation and polarity, talk at NELS 40.
Jeong S. 2021. Deriving dual dimensions of bias: Preposed Negation questions with EVEN, Journal of Semantics 38:49-94
Krifka M. 2013. Response particles as propositional anaphors. In The proceedings of Semantics and Linguistic Theory (SALT 23), ed. T. Snider, pp. 1-18
Krifka M. 2015. Bias in commitment space semantics: Declarative questions, negated questions, and question tags. In Proceedings of Semantics and Linguistic Theory 25, ed. S D'Antonio, M Moroney, CR Little, pp. 328-345. Washington, D.C.: LSA Open Journal Systems
Krifka M. 2017. Negative polarity questions as denegations of assertions. In Contrastiveness in information structure, alternatives and scalar implicatures, ed. C. Lee, F. Kiefer, M Krifka, pp. 359-398. Berlin: Springer. (Circulated as ms. since 2012)
Ladd DR. 1981. A first look at the semantics and pragmatics of negative questions and tag questions. In Papers from the 17th Regional Meeting of the Chicago Linguistic Society, ed. RA Hendrick, CS Masek, MF Miller, pp. 164-171. Chicago: CLS
Murray S. 2010. Evidentiality and the structure of speech acts. Rutgers University Ph.D diss.
Murray S. 2014. Varieties of update, Semantics \& Pragmatics 7:1-53
Northrup OB. 2014. Grounds for commitments. Dissertation, UC Santa Cruz
Reese BJ. 2006. The Meaning and Use of Negative Polar Interrogatives. In Empirical Issues in Syntax and Semantics 6, ed. O Bonami, P Cabredo Hofherr, pp. 331-354. http://www.cssp.cnrs.fr
Reese BJ. 2007. Bias in Questions. Dissertation, University of Texas at Austin
Repp S. 2006. \neg (A\&B). Gapping, Negation and Speech Act Operators, Research on Language and Computation 4(4):397-423
Repp S. 2013. Common ground management: modal particles, illocutionary negation and VERUM. In Beyond Expressives: Explorations in use-conditional meaning, ed. D Gutzmann, HM Gärtner, pp. 231-274. Leiden: Brill
Romero M. 2006. Biased Yes/No Questions: The Role of verum, Sprache und Datenverarbeitung 30:9-24
Romero M. 2015. High Negation in Subjunctive Conditionals and Polar Questions. In Proceedings of Sinn und Bedeutung 19, ed. E Csipak, H. Zeijlstra, pp. 499-516. Semanticsarchive.net
Romero M, CH Han. 2004. On negative yes/no questions, Linguistics and Philosophy 27:609658
van Rooy R, Šafářová M. 2003. On polar questions. In Proceedings of Semantics and Linguistic Theory 13, ed. RB Young, Y Zhou, pp. 292-309. Ithaca NY: CLC Publications
Schwarz B, Bhatt R. 2006. Light Negation and Polarity. In R. Zanuttini et al., eds., Negation, Tense, and Clausal Architecture, pp. 175-198. Washington: Georgetown U. Press.

APPENDIX

Update with Modal Centering (Murray 2010, 2014): Basics

- An information state (type $<\mathrm{s}, \mathrm{t}>$) is (the characteristics function of) a set of pairs $<$ top sequence T, bottom sequence $\perp>$:

$$
\begin{align*}
\{ & \ll \mathrm{s}, \mathrm{w}_{1}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{4} \gg \tag{82}\\
& \ll \mathrm{~s}, \mathrm{w}_{1}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{5} \gg \\
& \left.\ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{4} \gg, \ldots\right\}
\end{align*}
$$

- A sequence may contain objects of different types: individuals, worlds, propositions..
The most prominent (=leftmost) objects of each type are:
$\mathrm{T} \delta / \perp \delta=$ most prominent individual ref in the current T / \perp sequence.
$\mathrm{T} \omega / \perp \omega \quad=$ most prominent world in the current T / \perp sequence.
$T \Omega / \perp \Omega=$ most prominent propositional ref in current T / \perp sequence.
$T \omega\|/ \perp \omega\|=$ set containing the most prominent world in each of the T / \perp sequence in the current information state.
- Top sequences T represent the context set CS;

Bottom sequences \perp represent at-issue information.

- At-issue information is added to \perp. If accepted, then it iss added to T.

Not-at-issue information is added to T without going through \perp.

- Updates are functions from info states to info states:
(83) a. $[\mathrm{C}]=\lambda \mathrm{I}_{<\mathrm{s}, \mathrm{t}} . \lambda \mathrm{j}_{\mathrm{s}} . \mathrm{I}(\mathrm{j}) \wedge \mathrm{C}(\mathrm{j})$
b. $[\mathrm{J} ; \mathrm{K}]=\quad \lambda \mathrm{I}_{\mathrm{ss}, \mathrm{t}}, \lambda \mathrm{j}_{\mathrm{s}} .(\mathrm{K}(\mathrm{J}(\mathrm{I}))(\mathrm{j})$

Back to the Cheyenne DIRECT EVIDENTIAL:
(84) Initial context set p_{0} :
$\left\{\mathrm{w}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$
(85) [Sandy won] DIR.
a. At-issue: \quad q (='Sandy won') $\quad\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$
b. Non-at-issue: $\operatorname{DIR}(i, q) \quad\left(=‘\right.$ Speaker has direct evidence for q ') $\left\{\mathrm{w}_{0}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$

Figure 7 Updates for (26): Cheyenne direct evidential

Table 4 Information states for (27), part one

c_{4}	c_{5}	c_{6}	c_{7}
\{ $\overline{\left.\left\langle s, w_{0}, p_{0}\right\rangle,\left\langle q, w_{1}\right\rangle\right\rangle,}$	\{	\{	\{
$\left\langle\left\langle s, w_{0}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$,	$\left\langle\left\langle s, w_{0}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$,		
$\left\langle\left\langle s, w_{0}, p_{0}\right\rangle,\left\langle q, w_{3}\right\rangle\right\rangle$,			
$\left\langle\left\langle s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{1}\right\rangle\right\rangle$,			
$\left\langle\left\langle s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$,	$\left\langle\left\langle s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$	$\left\langle\left\langle s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$	$\left\langle\left\langle p_{2}, s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{2}\right\rangle\right\rangle$
$\left.\left\langle\left\langle s, w_{2}, p_{0}\right\rangle,\left\langle q, w_{3}\right\rangle\right\rangle\right\}$	\}	\}	\}

Table 5 Information states for (27), part two

Back to the Cheyenne Reportative evidential:
(86) Initial context set p_{0} :
$\left\{\mathrm{W}_{0}, \mathrm{w}_{1}, \mathrm{w}_{2}\right\}$
(87) [Sandy won] RPT.

Figure 3 Updates for (14): Cheyenne reportative evidential

c4

$$
\begin{aligned}
\{ & \ll \mathrm{s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{1} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{2} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{3} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{1} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{2} \gg \\
& \left.\ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{3} \ggg\right\}
\end{aligned}
$$

c5

$$
\begin{aligned}
& \left\{\ll \mathrm{s}, \mathrm{~W} 0, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}, \mathrm{w}_{1} \gg\right. \text {, } \\
& \begin{array}{l}
\ll \mathrm{s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}, \mathrm{w}_{2} \gg, \\
\ll \mathrm{~s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}_{3}, \mathrm{w}_{3} \gg,
\end{array} \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{1} \gg \text {, } \\
& \ll \mathrm{s}, \mathrm{~W} 2, \mathrm{p}_{0}>,<\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{2} \gg \text {, } \\
& \ll \mathrm{s}, \mathrm{w} 2, \mathrm{p}_{0}>,<\mathrm{W}_{2}, \mathrm{q}^{2}, \mathrm{w}_{3} \gg \text { \} }
\end{aligned}
$$

c6

$$
\begin{aligned}
&\{ \ll \mathrm{s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}, \mathrm{w}_{1} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}, \mathrm{w}_{2} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{0}, \mathrm{p}_{0}>,<\mathrm{w}_{0}, \mathrm{q}, \mathrm{w}_{3} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{1} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{2} \gg \\
& \ll \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{3} \ggg
\end{aligned}
$$

- Proposal for really-PosQs:
(88) Initial context set $\mathrm{p}_{0}=\left\{\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{5}, \mathrm{w}_{6}\right\}$
$\mathrm{q}(=$ Sandy won $) \quad=\left\{\mathrm{w}_{4}, \mathrm{w}_{5}, \mathrm{w}_{6}\right\}$
ForSure($\mathrm{i}, \mathrm{q} \in \mathrm{CG})$) $=\left\{\mathrm{w}_{2}, \mathrm{w}_{6}\right\}$
(89) a. Did Sandy really win?
b. LF: [Q [VERUM [Sandy won]]]
c. Partition:
\{ info state with , info state with \} at-issue: q non-at-issue: FORSURE(i,q $\in C G$)
at-issue: -q (/ $\diamond \mathrm{q})$ non-at-issue: \neg ForSURE(i,q $\in \mathrm{CG})$

(90) ${ }^{\mathrm{T}}[\mathrm{x} \mid \mathrm{x}=$ sandy $] ;\left[\mathrm{w} \mid\right.$ won $\left._{\mathrm{w}}<\mathrm{T} \delta>\right] ;[\mathrm{p}|\mathrm{p}=\perp \omega| \mid]$;
[FORSURET ${ }_{\text {(}}$ (i, $\perp \Omega \in \mathrm{CG}$)];
$\left\{\begin{array}{c}{[\perp \omega=\perp \omega]} \\ \mathrm{c} 5 . \mathrm{i}\end{array}\right.$
$\mathrm{T}[\mathrm{w}|\mathrm{w} \in \overline{\mathrm{T}} \omega| \mid] ;[\mathrm{w} \mid \mathrm{w}=\mathrm{T} \omega]\}$
$\mathrm{c} 5 . \mathrm{ii}$
$\mathrm{c} 5 . \mathrm{iii}$
.. c4

$$
\begin{aligned}
& \left\{\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{q}, \mathrm{w}_{4} \gg,\right. \\
& \ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}>,<\mathrm{q}, \mathrm{w}_{5} \gg \text {, } \\
& \left.\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{q}, \mathrm{w}_{6}\right\rangle>\text {, } \\
& \ll \mathrm{s}, \mathrm{w}_{6}, \mathrm{p}^{\mathrm{p}}>,<\mathrm{q}, \mathrm{w} 4 \gg, \\
& \ll \mathrm{~s}, \mathrm{w}, \mathrm{p}_{\mathrm{p}}>,<\mathrm{q}, \mathrm{w}_{5} \gg \text {, } \\
& \left.\ll \mathrm{s}, \mathrm{w}_{6}, \mathrm{p}_{0}\right\rangle,<\mathrm{q}, \mathrm{w}_{6} \gg
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\left\{\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,\left\langle\mathrm{q}, \mathrm{w}_{4} \gg,\right.\right.\right. \\
& <\left\langle\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{q}, \mathrm{w}_{\mathrm{s}}>\right\rangle, \\
& \left.\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{q}, \mathrm{w}_{6} \gg\right. \text {, } \\
& \ll \mathrm{s}, \mathrm{w}, \mathrm{p}_{\mathrm{p}}>,<\mathrm{q}, \mathrm{w}_{\mathrm{w}} \gg \text {, } \\
& \ll \mathrm{s}, \mathrm{w}_{6}, \mathrm{p}_{0}>,<\mathrm{q}_{\mathrm{w}} \mathrm{w}_{5} \gg \text {, } \\
& \ll \mathrm{s}, \mathrm{w} 6, \mathrm{pp}^{\prime}>,<\mathrm{q}, \mathrm{w}_{6} \gg
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{aligned}
\ll W_{1}, \mathrm{~s}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<W_{1}, \mathrm{q}_{1}, W_{4} \gg, \\
\ll \mathrm{~W}_{5}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>
\end{aligned}\right\} \\
& \ll W_{5}, \mathrm{~S}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}, \mathrm{~W}_{4} \gg \text {, } \\
& \ll \mathrm{W}_{1}, \mathrm{~s}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{5} \gg \text {, } \\
& \ll W_{5}, \mathrm{~s}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}^{2}, \mathrm{~W}_{5} \gg \text {, } \\
& \ll W_{1}, \mathrm{~S}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{q}^{2}, \mathrm{w}_{6} \gg \text {, } \\
& \ll W_{5}, \mathrm{~s}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}^{2}, \mathrm{~W}_{6} \gg \text {, } \\
& \ll W_{1}, \mathrm{~S}_{2}, \mathrm{~W}_{6}, \mathrm{p}_{0}>,<\mathrm{W}_{1}, \mathrm{q}, \mathrm{w}_{4} \gg \text {, } \\
& \ll W_{5}, \mathrm{~s}, \mathrm{~W}_{6}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}^{2}, \mathrm{~W}_{4} \gg \text {, } \\
& \ll W_{1}, \mathrm{~S}, \mathrm{w}_{6}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{q}, \mathrm{~W}_{5} \gg \text {, } \\
& \ll W_{5}, \mathrm{~s}, \mathrm{~W}_{6}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}^{2}, \mathrm{~W}_{5} \gg \text {, } \\
& \ll W_{1}, \mathrm{~S}^{2}, \mathrm{~W}_{6}, \mathrm{p}_{0}>,<\mathrm{W}_{1}, \mathrm{q}^{2}, \mathrm{~W}_{6} \gg \text {, } \\
& \text { \} } \left.\quad \ll W_{5}, \mathrm{~s}, \mathrm{~W}_{6}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{q}^{2}, \mathrm{~W}_{6} \gg\right\}
\end{aligned}
$$

- Proposal for HiNQ with FALSUM:
(91) Initial context set $\mathrm{p}_{0}=\left\{\mathrm{W}_{1}, \mathrm{w}_{2}, \mathrm{~W}_{5}, \mathrm{w}_{6}\right\}$
$\mathrm{q}(=$ Sandy won $) \quad=\left\{\mathrm{w}_{4}, \mathrm{w}_{5}, \mathrm{w}_{6}\right\}$
ForSure $(\mathrm{i}, \mathrm{q} \notin \mathrm{CG}))=\left\{\mathrm{w}_{2}, \mathrm{w}_{6}\right\}$
(92) a. Didn't Sandy win (too)?
b. LF: [Q [FALSUM [Sandy won]]]
c. Partition:
\{ info state with at-issue: $\quad \neg \mathrm{q}$ non-at-issue: FORSURE(i, $q \notin \notin \mathrm{CG})$
info state with at-issue: $\quad \sim q-(/ \diamond \neg q)$ non-at-issue: \neg FORSURE $(\mathrm{i}, \mathrm{q} \notin \mathrm{CG})$

(93) ${ }^{\mathrm{T}}[\mathrm{x} \mid \mathrm{x}=$ sandy $] ;\left[\mathrm{w} \mid \mathrm{won}_{\mathrm{w}}<\mathrm{T} \delta>\right] ;[\mathrm{p}|\mathrm{p}=\perp \omega| \mid]$;
c4.i $[\mathrm{w} \mid \mathrm{w} \in \overline{\perp \omega \|}] ;\left[\operatorname{ForSURE}_{\mathrm{T} \omega}(\mathrm{i}, \perp \Omega \notin \mathrm{CG})\right] ;$

$$
\begin{array}{cc}
\{[\perp \omega=\perp \omega] & , \\
\hline \mathrm{c} 5 . \mathrm{i} & \mathrm{~T} \mid \mathrm{w} \in \overline{\mathrm{~T} \omega| |}] ;[\mathrm{w} \mid \mathrm{w}=\mathrm{T} \omega]\} \\
\mathrm{c} 5 . \mathrm{ii} & \mathrm{c} 5 . \mathrm{iii}
\end{array}
$$

(iii)
$\left\{\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{4} \gg\right.\right.$, $\left.\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{pp}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{4}\right\rangle>$,
$\left\langle<\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w} 4\right\rangle>$,
$\left\langle<\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}, \mathrm{q}, \mathrm{w}_{\mathrm{s}}\right\rangle>$,
$\ll \mathrm{s}, \mathrm{w} 2, \mathrm{p}\rangle>,\langle\mathrm{w} 2, \mathrm{q}, \mathrm{ws} \gg$,
$\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}>,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w} \ggg\right.$,
$\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}>,\left\langle\mathrm{w}, \mathrm{q}, \mathrm{w}_{\mathrm{w}}\right\rangle>$,
$\ll \mathrm{s}, \mathrm{w} 2, \mathrm{p}\rangle>,\langle\mathrm{w} 2, \mathrm{q}, \mathrm{w}<\gg$,
$\ll \mathrm{s}, \mathrm{w} 2, \mathrm{p}\rangle>,\langle\mathrm{w}, \mathrm{q}, \mathrm{w} \mathrm{w} \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p}, \mathrm{p}\rangle,\langle\mathrm{w}, \mathrm{q}, \mathrm{w} \ggg$,
$\ll \mathrm{s}, \mathrm{w} 6, \mathrm{p} 0>,<\mathrm{w} 2, \mathrm{q}, \mathrm{w} 4 \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p} \mathrm{pp}^{2},\langle\mathrm{w} 3, \mathrm{q}, \mathrm{w} 4 \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p}_{0}>,<\mathrm{w} 1, \mathrm{q}, \mathrm{w} 5 \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p},>,\langle\mathrm{w}, \mathrm{q}, \mathrm{ws} \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p}, \mathrm{p},<\mathrm{w}, \mathrm{q}, \mathrm{w}, \mathrm{ws} \gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p}^{2}>,\langle\mathrm{w}, \mathrm{q}, \mathrm{w}<\gg$,
$\ll \mathrm{s}, \mathrm{w}, \mathrm{p}, \gg,\langle\mathrm{w} 2, \mathrm{q}, \mathrm{w} \mathrm{b} \gg$,
$<\left\langle\mathrm{s}, \mathrm{w}_{6}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{6} \gg\right\}$

$\left\{\left\{\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{4} \gg\right.\right.\right.$, $\left\langle<\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w} 4\right\rangle$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{5}\right\rangle>\right.$, $\left\langle<\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{5}\right\rangle>$, $\left.\ll \mathrm{s}, \mathrm{w}_{2}, \mathrm{pp}_{\mathrm{p}}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{5} \gg\right.$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{6}\right\rangle\right\rangle$, $\langle\langle\mathrm{s}, \mathrm{w} 2, \mathrm{p} 0\rangle,\langle\mathrm{w} 2, \mathrm{q}, \mathrm{w}<\gg$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}_{2}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{6}\right\rangle\right\rangle^{2}$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}_{6}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w} \downarrow\right\rangle\right\rangle$, $\left\langle<\mathrm{s}, \mathrm{w}, \mathrm{p}_{0}\right\rangle,\langle\mathrm{w} 2, \mathrm{q}, \mathrm{w} 4\rangle$, $<\left\langle\mathrm{s}, \mathrm{w} 6, \mathrm{p} \mathrm{p}^{2},\langle\mathrm{w} 3, \mathrm{q}, \mathrm{w} 4 \gg\right.$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w} \ggg\right.\right.$, $\ll \mathrm{s}, \mathrm{w} \in, \mathrm{pp}_{0}>,<\mathrm{w} 2, \mathrm{q}, \mathrm{ws} \gg$, $\ll \mathrm{s}, \mathrm{w}, \mathrm{p},>,<\mathrm{w} 3, \mathrm{q}, \mathrm{w} \ggg$, $\left\langle\left\langle\mathrm{s}, \mathrm{w}, \mathrm{p}^{\circ}\right\rangle,\left\langle\mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{6}\right\rangle>\right.$, $\left\langle<\mathrm{s}, \mathrm{w}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{2}, \mathrm{q}, \mathrm{w} 6\right\rangle>$, $\left.\ll \mathrm{s}, \mathrm{w}_{6}, \mathrm{p}_{0}\right\rangle,\left\langle\mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{6} \gg\right\}$

$\left\{\ll \mathrm{w}_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{4} \gg\right.$, $\ll W_{5}, \mathrm{~S}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{w}_{2}, \mathrm{q}^{2}, \mathrm{w}_{4} \gg$, $\ll \mathrm{w}_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{4} \gg$, $\ll \mathrm{W}_{5}, \mathrm{~S}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{w}_{3}, \mathrm{q}^{2}, \mathrm{~W}_{4} \gg$, $\ll W_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{1}, \mathrm{w}_{1}, \mathrm{q}_{1}, \mathrm{w}_{5} \gg$, $\ll \mathrm{w}_{5}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{5}, \mathrm{w}_{1}, \mathrm{q}^{2}, \mathrm{w}_{5} \gg$, $\ll W_{5}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{5}, \mathrm{w}_{1}, \mathrm{q}, \mathrm{w}_{5} \gg$,
$\ll \mathrm{w}_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{q}, \mathrm{w}_{5} \gg$, $\ll W_{5}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{5}, \mathrm{w}_{2}, \mathrm{q}_{1}, \mathrm{w}_{5} \ggg$,
$\ll \mathrm{w}_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{5} \gg$, $\ll W_{5}, \mathrm{~S}, \mathrm{~W}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{5}, \mathrm{~W}_{2}, \mathrm{q}, \mathrm{w}_{5} \gg$,
$\ll \mathrm{w}_{1}, \mathrm{~s}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{w}_{1}, \mathrm{w}_{3}, \mathrm{q}, \mathrm{w}_{5} \gg$, $\ll \mathrm{W}_{5}, \mathrm{~S}, \mathrm{w}_{2}, \mathrm{p}_{0}>,<\mathrm{W}_{5}, \mathrm{w}_{3}, \mathrm{q}^{2}, \mathrm{w}_{5} \gg$,

[^0]: ${ }^{1}$ Caveat: Not all evidentials pattern alike.

[^1]: ${ }^{2}$ See Murray (2010) for potential counterexamples.

[^2]: ${ }^{3}$ The intuitive notion of "intent" of a question -the potential further sub-questions that the Speaker may want to pursue if the proposition in the sentence radical is true- can be formalized in different ways, e.g. sub-issues (AnderBois 2011) or highlighting in Inquisitive Semantics (Ciardelli et al. 2013).

[^3]: ${ }^{4}$ The main contribution of the paper is to explain the effect of the particle mica in negative PQs in Italian．

[^4]: \Rightarrow By treating the contribution of VERUM/FALSUM as a presupposition of the entire question, the CG already contains information that entails the answer to the current question. This violates the Interrogativity Principle and should thus lead to infelicity.

[^5]: ${ }^{5}$ For an implementation using Commitment Space Semantics, see Goodhue (2022b).

