
 1

Alternative-based semantics combined with movement:
the role of presupposition

Maribel Romero
University of Konstanz

(Mostly joint work with Marc Novel)

Workshop on Alternative-Based Semantics
Nantes, France, October 29-30, 2010

1. Introduction

 The following scoping mechanisms (among others) have been proposed in the literature:
• Syntactic movement
• Sets of alternatives

 Syntactic movement:
In the syntax, a constituent is displaced and leaves a trace behind.
In the semantics, the trace is interpreted as a variable and its λ-binder is introduced by the
Predicate Abstraction rule.

(1) a. Alice saw nobody.
 b. LF: Nobody 5 [Alice saw t5]

(2) Predicate Abstraction (PA):

λxe. [[γ]]M,gx/i
 <e,τ>

 i [[γ]]M,g

 τ

(3) a. [[t5]]M,g = g(5) e. [[1 Alice saw t5]]M,g = λx.see(a,gx/5(5))
 b. [[saw]]M,g = λx.λy.see(y,x) = λx.see(a,x)
 c. [[Alice]]M,g = a f. [[nobody]]M,g = λP.¬∃z[P(z)]
 d. [[Alice saw t5]]M,g = 1 iff see(a,g(5)) g. [[nobody 1 Alice saw t5]]M,g = 1 iff
 ¬∃z [see(a,z)]

 Syntactic movement is sensitive to islands: (4).
A c-commanding index of movement i binds the trace ti even if another c-commanding
index of movement j intervenes (provided that i ≠ j): (5).

(4) a. * Who1 did Taro eat the rice cakes that t1 bought?
 b. * Who1 did Taro leave because t1 came?

(5) a. Who1 did Taro send every postcard to t1?
 b. LF: Who 1 [did [every postcard] 2 [Taro send t2 to t1]]

 2

 Sets of alternatives:
In the syntax, there is no movement and no trace.
In the semantics, sets of alternative denotations are used, so that the type of expressions is
raised from σ to <σ,t> (Hamblin 1973). Alternatives are combined by point-wise
Functional Application until the intended scope is reached. At that point, alternatives may
be "bound" or closed off by an associated operator.

(6) Alice saw whomin-situ.

(7) Point-wise functional application:

 { f(x): f ∈ [[α]]M,g ∧ x ∈ [[β]]M,g }
<τ,t>

 [[α]]M,g [[β]]M,g

 <<σ,τ>,t> <σ,t>

(8) a. [[whom]]M,g = { xavier, yves, zack }
 b. [[saw]]M,g = { λx.λy.see(y,x) }
 c. [[saw whom]]M,g = { λy.see(y,xavier), λy.see(y,yves), λy.see(y,zack) }
 d. [[Alice]]M,g = { a }
 e. [[Alice saw whom]]M,g = { see(a,xavier), see(a,yves), see(a,zack) }

 Scope via sets of alternatives is insensitive to islands: (9)-(10). (Shimoyama 2006)
But it does not tolerate an intervening operator that associates with sets of alternatives: a
c-commanding operator cannot associate with a set of alternatives if another c-
commanding operator that associates with sets of alternatives intervenes: (11)-(12).

(9) Taro-wa [[dare-ga katta] mochi]-o tabemasita ka?

Taro-Top who-NOM bought rice cake-ACC ate Q
 'Whox did Taro eat rice cakes that x bought?'

(10) Taro-wa [[dare-ga kita-kara] kaerimasita ka?
 Taro-TOP who-NOM came-because left Q
 'Whox did Taro leave because x came?'

(11) Yoko-wa [[Taro-ga nan-nen-ni nani-nituite kaita ronbun]-mo yuu-datta ka]
 Yoko-Top [[Taro-Nom what-year-in what-about wrote paper]-MO A-was Q]

siritagatteiru.
want to know}

 a. 'Yoko wonders whether for every topic x, every year y, the paper that Taro wrote on
x in y got an A.'

 b. * 'Yoko wonders for which year y, for every topic x, the paper that Taro wrote on x
in y got an A.'

(12) [[what ... what]-mo∀ ...] Q

 3

 These two scoping mechanisms are often assumed to co-exist in the same language.

• Syntactic movement: wh-movement, Quantifier Raising (QR), A-movement, etc.

• Sets of alternatives: indeterminate phrases in Japanese, focus, free choice and
epistemic indefinites, etc.

 The question arises, how we can interpret compositionally structures that involve, at the
same time, movement and binding of variables and sets of alternatives.

(14) a. Who saw nobody?
 b. LF: Nobody 1 [whoin-situ saw t1]

(15) a. [[who]]M,g = { a, b, c}

b. [[who saw t1]]M,g = { see(a,g(1)), see(b,g(1)), see(c,g(1)) }
c. [[1 who saw t1]]M,g = ???
c'. [[1 who saw t1]]M,g = λx. {see(a,x), see(b,x), see(c,x)} By PA rule (2)
d. [[nobody]]M,g = { λP<e,t>.¬∃z[P(z)] }
e. ???

 To combine movement with sets of alternatives, an alternative-friendly Predicate
Abstraction (PA) rule needs to be defined. Shan (2004) claims that it is not possible to
define such a PA rule. Three problems:

PROBLEM : Over-generation of functional and pair-list readings (Shan 2004).
PROBLEM : Binding into the "generator" of the set of alternatives (e.g. into an in-situ

wh-phrase, into a free choice indefinite) by an XP that combines point-wise with that
set of alternatives (Shan 2004).

PROBLEM : Binding into the "generator" of the set of alternatives by an XP that does not
combine point-wise with that set of alternatives (Shan, p.c.).

 The GOAL of this talk is to show that these three problems can be circumvented if certain

(reasonable) assumptions are made. The solution to problem is to assume the general
type <<a,τ>,t> from Poesio (1996). The key idea to solve problems and is that the
"generator" of the set of alternatives has the semantics of a definite description, its
presupposition playing a central role.

 Plot of the rest of the talk:
 §2. PROBLEM and Poesio's (1996) solution.

§3. PROBLEM :
§3.1. Problem: Binding into a wh-phrase from inside the set of alternatives.
§3.2. Solution: In-situ wh-phrases as definite descriptions (Novel & Romero 2009).
§3.3. Extension of the proposed solution to free choice indefinites.

§4. PROBLEM : Binding into a wh-phrase from outside the set of alternatives.
§5. Conclusion.

 4

2. PROBLEM and Poesio's (1996) solution.

 Consider (16) again (repeated from (14)): instead of (17), we would need the result in (19)

for it to properly combine with [[nobody]]M,g.

(16) a. Who saw nobody?
 b. LF: Nobody 1 [whoin-situ saw t1]

(17) [[1 whoin-situ saw t1]]M,g = λx. {see(a,x), see(b,x), see(c,x)} By PA rule (2)

(18) [[nobody]]M,g = {λP<e,t>.¬∃z[P(z)]}

(19) [[1 whoin-situ saw t1]]M,g = { λx.see(a,x), λx.see(b,x), λx.see(c,x) }

 A type shifting rule can be defined: (20). But there is a caveat. As Shan notes, a function

into sets (type <e,<τ,t>>) carries less information with respect to ordering compared to a
set of functions (type <e,τ>,t>). If we transpose (17) using the shifting rule in (20), the
resulting set will contain uniform <e,t>-functions like the ones in (21), but also non-
uniform <e,t>-functions like the ones in (22) with different values for the subject.

(20) λQ<e,<τ,t>>. { f<e,τ>: ∀xe[f(x) ∈ Q(x)] }

(21) x1 saw(a,x1) x1 saw(b,x1) x1 saw(c,x1)
 x2 saw(a,x2) x2 saw(b,x2) x2 saw(c,x2)
 x3 saw(a,x3) x3 saw(b,x3) x3 saw(c,x3)

(22) x1 saw(a,x1) x1 saw(a,x1) x1 saw(a,x1)
 x2 saw(c,x2) x2 saw(b,x2) x2 saw(a,x2)
 x3 saw(b,x3) x3 saw(c,x3) x3 saw(c,x3)

 In the literature, an alternative-friendly PA-rule exists that incorporates this transposing

(Hagstrom 1998, Kratzer and Shimoyama 2002).

(23) { f<e,τ>: ∀xe [f(x) ∈ [[γ]]M,gx/i] }
 <<e,τ>,t>

 i [[γ]]M,g
 <τ,t>

 PROBLEM : Shan (2004) shows that including non-uniform functions leads to an

empirical problem: unwanted functional and pair-list readings in e.g. (24).

(24) Q: Who saw nobody?
 A: # His1 mother saw nobody1.
 A': # Alice didn't see Xavier, Caroll didn't see Yves, and Barbara didn't see Zack.

 5

 Poesio's (1996) general type <<a,τ>,t>.
Poesio proposes that, when using set of alternatives, we use assignment-sensitive
denotations like (25). This way, it is possible to have the general type <<a,τ>,t> with the
set layer as the outermost and the assignment layer inside. With this general type
template, the Funtional Application rule (26) is used and the PA-rule (27) can be defined.

(25) a. [[t1, <a,e>]]M = λga. g(1)
 b. [[saw<a,<e,<e,t>>>]]M = λga.λxe.λye. see(y,x)

(26) Point-wise, assignment-sensitive Functional Application rule:

{ λg.f(g)(x(g)) : f ∈ [[β]]M ∧ x ∈ [[γ]]M }
 <<a,τ>,t>

 [[β]]M, [[γ]]M,g
 <<a,<σ,τ>>,t> <<a,σ>,t>

(27) Poesio's alternative-friendly PA-rule:
 { λg.λx.f(gx/i) : f ∈ [[γ]]M }
 <<a,<e,τ>>,t>

 i [[γ]]M,g
 <<a,τ>,t>

(28) a. LF: Nobody 1 [whoin-situ saw t1]

b. [[who saw t1]]M = { λg.see(a,g(1)), λg.see(b,g(1)), λg.see(c,g(1)) }
c. [[1 who saw t1]]M = { λg.λx.see(a,gx/1(1)), λg.λx.see(b,gx/1(1)), λg.λx.see(c,gx/1(1)) }

 = { λg.λx.see(a,x), λg.λx.see(b,x), λg.λx.see(c,x) }
d. [[nobody]]M = { λg.λP<e,t>.¬∃z[P(z)] }
e. [[nobody 1 who saw t1]]M =

 { λg.¬∃z[see(a,z)], λg.¬∃z[see(b,z)], λg.¬∃z[see(c,z)] }

 (28c) contains only uniform functions, hence PROBLEM is solved.

3. PROBLEM .

3.1. Problem: Binding into a wh-phrase from inside the set of alternatives

 Shan (2004) points out a second problem for Kratzer and Shimoyama's PA-rule which

also applies to Poesio's. The problem arises when we need to bind a variable inside the
phrase generating the non-singleton set of alternatives, e.g. the in-situ wh-phrase in (29):

(29) a. Which man1 sold which of his1 paintings?
 b. LF: Which man 1 [t1 sold which of his1 paintings]?

 In (29), for each man, the set of paintings is different. Intuitively (and leaving assignments

aside for the moment), we would need (30). But this gives us (31), which has the
problematic <e,<τ,t>> again.

 6

(30) [[1 [t1 sold which of his1 paintings]]]M =e.g.
Velázquez {Velázquez sold Las Meninas, Velázquez sold The Surrender of Breda}
Picasso {Picasso sold Guernica, Picasso sold Three Musicians}
...

(31) [[1 [t1 sold which of his1 paintings]]]M = λx. {x sold y: y is a painting of x}

 Additionally, binding into the wh-phrase and QR can take place in the same sentence, as

in (32). This means that the type <<e,τ>,t> needed for QR and the problematic type
<e,<τ,t>> needed for binding into the wh-phrase would have to be interleaved.

(32) a. Which man1 told nobody about which of his1 paintings?
 b. LF: Which man 1 nobody [2 t1 told t2 about which of his1 paintings]<<e,τ>,t>
 c. { λy. g(1) told y about z: z is a painting of g(1) }

d. LF: Which man [1 nobody 2 t1 told t2 about which of his1 paintings]<e,<τ,t>>
e. λx. { x told nobody about z: z is a painting of x }

3.2. Proposed solution: in-situ wh-phrases as definite descriptions.

 Rullmann and Beck (1997) note that wh-phrases project existence presuppositions the way

definite descriptions do: (33)-(34). They propose to leave wh-phrases in their base
position and treat them semantically as definites, as in (35b).

(33) a. Bill knowsHOLE he caught the unicorn.
 b. Bill thinksPLUG he caught the unicorn.

(34) a. Which unicorn did Bill knowHOLE he caught?
 b. Which unicorn did Bill thinkPLUG he caught?

(35) a. [[the man Sam]]M,g = the (λy. man(y,w) ∧ y=Sam)

b. [[which mani]]M,g = the (λy. man(y,w) ∧ y=xi)

 Solution to PROBLEM (already proposed in Novel and Romero 2009).

We combine Poesio's general type <<a,τ>,t> and PA-rule with Rullmann and Beck's
treatment of wh-phrases as definites. That is, a wh-phrase does not denote a set of
assignment-sensitive name-like denotations anymore, as in (36), but a set of assignment-
sensitive definite description-like denotations, as in (37).

(36) [[who]]M = { λg.x : x ∈ De }
 =e.g. { λg.a(lice), λg.b(arbara), λg.c(aroll) }

(37) [[who]]M = { λg.ιv[person(v) ∧ v=x] : x ∈ De }
 =e.g. { λg.ιv[person(v) ∧ v=a], λg.ιv[person(v) ∧ v=b], λg.ιv[person(v) ∧ v=c] }

 7

 Wh-phrases as introducing sets of potentially partial functions:
When the wh-phrase contains a pronoun bound from the outside, the <a,e>-functions in
the set of alternatives will be partial. Consider (38), where G stands for Guernica and LM
for Las Meninas. The first <a,e>-function in (38b) will map an assignment g to Guernica
if g(1)=Picasso, and it will be undefined otherwise. That is, the set of alternatives will
contain as many <a,e>-functions as there are individuals in De. But those functions will
be partial: they will output an individual d only when d is a painting of g(1)'s.

(38) [[which of his1 paintings]]M

a. = { λg.ιv[painting-of(v,g(1)) ∧ v=x] : x ∈ De }
 b. =e.g. { λg.ιv[painting-of(v,g(1)) ∧ v=G], λg.ιv[painting-of(v,g(1)) ∧ v=LM], ... }

 Full semantic computation of first problematic example:

(39) a. Which man1 sold which of his1 paintings? (=(29))
 b. LF: Which man 1 [t1 sold which of his1 paintings]?

(40) Poesio's alternative-friendly PA-rule: (=(27))
 { λg.λx.f(gx/i) : f ∈ [[γ]]M }
 <<a,<e,τ>>,t>

 i [[γ]]M,g
 <<a,τ>,t>

(41) a. [[sold]]M = { λg.λx.λy. y sold x }
b. [[sold which of his1 paintings]]M = { λg.λy. y sold ιv[paint-of(v,g(1)) ∧ v=G],

 λg.λy. y sold ιv[paint-of(v,g(1)) ∧ v=LM] }
 c. [[t1]]M = { λg.g(1)}

d. [[t1 sold which of his1 paintings]]M = { λg. g(1) sold ιv[paint-of(v,g(1)) ∧ v=G],
 λg. g(1) sold ιv[paint-of(v,g(1)) ∧ v=LM] }

e. [[1 t1 sold which of his1 paintings]]M
 = { λg.λx. gx/1(1) sold ιv[paint-of(v,g x/1(1)) ∧ v=G],
 λg.λx. g x/1(1) sold ιv[paint-of(v,g x/1(1)) ∧ v=LM] }

 = { λg.λx. x sold ιv[paint-of(v,x) ∧ v=G],
 λg.λx. x sold ιv[paint-of(v,x) ∧ v=LM] }
f. [[which man]]M = { λg.ιz[man(z) ∧ z=Picasso],

 λg.ιz[man(z)∧ z=Velázquez] }
g. [[which man 1 t1 sold which of his1 paintings]]M =

 { λg. ιz[man(z) ∧ z=Picasso] sold ιv[paint-of(v,ιz[man(z) ∧ z=Picasso]) ∧ v=G],
λg. ιz[man(z) ∧ z=Picasso] sold ιv[paint-of(v,ιz[man(z) ∧ z=Picasso]) ∧ v=LM], #
λg. ιz[man(z) ∧ z=Velázquez] sold ιv[paint-of(v,ιz[man(z) ∧ z=Velázquez]) ∧ v=G], #
λg. ιz[man(z) ∧ z=Velázquez] sold ιv[paint-of(v,ιz[man(z) ∧ z=Velázquez]) ∧ v=LM] }

 Some of alternatives in (41g) are presupposition failures (marked as #). (41g) captures
Shan's intuition that, for a man x, we can only felicitously choose among x's paintings,
and it does so while avoiding the problematic type <e,<τ,t>>. PROBLEM is solved.

 8

 Full semantic computation of problematic example allegedly with interleaving types:
(42) a. Which man1 told nobody about which of his1 paintings? (=(32))
 b. LF: Which man 1 [nobody 2 [t1 told t2 about which of his1 paintings]]

(43) a. [[told]]M = { λg.λx.λy.λz. z told x about y }
b. [[t2]]M = { λg. g(2) }
c. [[told t2]]M = { λg.λy.λz. z tells g(2) about y }
d. [[which of his1 paintings]]M = { λg.ιv[painting-of(v,g(1)) ∧ v=x] : x ∈ De }
e. [[tell t2 about which of his1 paintings]]M =
 = { λg.λz. z tells g(2) about ιv[paint-of(v,g(1)) ∧ v=x] : x ∈ De }
f. [[t1 tell t2 about which of his1 paintings]]M =
 = { λg. g(1) tells g(2) about ιv[paint-of(v,g(1)) ∧ v=x] : x ∈ De }
g. [[2 t1 tell t2 about which of his1 paintings]]M =
 = { λg.λue. gu/2(1) tells gu/2(2) about ιv[paint-of(v,gu/2(1)) ∧ v=x] : x ∈ De }
 = { λg.λue. gu/2(1) tells u about ιv[paint-of(v,gu/2(1)) ∧ v=x] : x ∈ De }
h. [[nobody]]M = { λg.λP<e,t>.¬∃u[P(u)] }
i. [[nobody 2 t1 tell t2 about which of his1 paintings]]M =
 = { λg. ¬∃u [gu/2(1) tells u about ιv[paint-of(v,gu/2(1)) ∧ v=x]] : x ∈ De }
j. [[1 nobody 2 t1 tell t2 about which of his1 paintings]]M =
 = { λg.λwe. ¬∃u [gw/1 u/2(1) tells u about ιv[paint-of(v,g w/1 u/2(1)) ∧ v=x]] : x ∈ De }
 = { λg.λwe. ¬∃u [w tells u about ιv[paint-of(v,w) ∧ v=x]] : x ∈ De }
k. [[which man]]M = { λg. ιy[man(y) ∧ y=z] : z ∈ De }
l. [[which man 1 nobody 2 t1 tell t2 about which of his1 paintings]]M =
 = { λg. ¬∃u [ιy[man(y) ∧ y=z] tells u about ιv[paint-of(v, ιy[man(y) ∧ y=z]) ∧
 v=x]] : x ∈ De ∧ z ∈ De }

3.3. Extension of the proposed solution to free choice indefinites.
 Kratzer and Shimoyama (2002) propose that free choice NPs like German irgendeinen

Studenten in (44) are interpreted as introducing a (widened) set of students: (45). The set
of alternatives is closed off when the relevant operator is encountered, e.g. kann 'can'.

(44) Hans kann irgendeinen Studenten besuchen.
 Hans can anyone student visit. 'Hans can visit any student.'

(45) [[irgendein Student]]M,g = {x: x is a student in w}

 There exist examples where we need to bind into a free choice indefinite, that is, examples

with the problematic configuration described in PROBLEM 2: (46). To circumvent the
problem, one would need to treat free choice indefinites as underlying definites: (47).

(46) a. John can introduce any student1 to any professor of his1.
b. LF: Can [any student 1 John introduces t1 to any professor of his1]

(47) [[any professor of his1]]M = { λg.ιv[prof-of(v,g(1)) ∧ v=x] : x ∈ De }

 In fact, Rullmann and Beck's diagnosis applies to free choice indefinites as well:

(48) a. John is lookingPLUG for the whitest unicorn.
 b. John can lookPLUG for any unicorn.

 9

4. PROBLEM 3: Binding into a wh-phrase from outside the set of alternatives.

 Shan (p.c.) wonders how the proposed analysis fares when binding into the "generator" of

the set of alternatives is done by an XP that does not combine point-wise with that set of
alternatives. PROBLEM : he asks how we analyse (49) and predict the infelicity of (50).

(49) Every man1 wonders / knows which of his1 paintings is good.

(50) #Every man1 wonders / knows which of his1 hearts is good.

 Abridged computation of (49) under the proposed analysis:

(51) a. [[which of his1 paintings is good]]M

= { λg. ιx[x=v & x ≤ σy[*paint-of(y,g(1))]] is good : v ∈ De }
=e.g.{ λg. ιx[x=A & x ≤ σy[*paint-of(y,g(1))]] is good,

 λg. ιx[x=B & x ≤ σy[*paint-of(y,g(1))]] is good,
 λg. ιx[x=C & x ≤ σy[*paint-of(y,g(1))]] is good,
 λg. ιx[x=D & x ≤ σy[*paint-of(y,g(1))]] is good }

 b. [[t1 knows which of his1 paintings is good]]
 = λg. g(1) knows { ιx[x=v & x ≤ σy[*paint-of(y,g(1))]] is good : v ∈ De }

 c. [[1 t1 knows which of his1 paintings is good]]M
 = λg.λz. z knows { ιx[x=v & x ≤ σy[*paint-of(y,z)]] is good : v ∈ De }
 =e.g. λg.λz. z knows { ιx[x=A & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=B & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=C & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=D & x ≤ σy[*paint-of(y,z)]] is good }

 Note that, for any value of g(1) in (51a), each of the functions in the embedded set
shares the presupposition that g(1) has more than one painting. Projecting up to λz and
everyone, the sentence presupposes that everyone relevant has more than one painting,
as in (52). This explains #(50).

(52) λg.λz: ∃>1y[*paint-of(y,z)]. z knows ...

 Note that, for any value of of g(1) in (51a), each of the embedded functions raises a
different presupposition about the identity of the ιx element.

 How should these non-shared presuppositions project?

 Towards a solution: We could make these non-shared atomic presuppositions project as a

disjunctive presupposition, as in (53). The overall presupposition and assertion of (49)
would then be as in (54)-(55).

(53) λg.λz: (A≤σy[*paint-of(y,z)] ∨ B≤σy[*paint-of(y,z)] ∨

 C≤σy[*paint-of(y,z)] ∨ D≤σy[*paint-of(y,z)]).
z knows ...

 10

(54) Presupposition of (49):
λg. ∀z [man(z) → ∃>1y[*paint-of(y,z)] ∧

 [A≤σy[*paint-of(y,z)] ∨ B≤σy[*paint-of(y,z)] ∨
 C≤σy[*paint-of(y,z)] ∨ D≤σy[*paint-of(y,z)]]]

 This boils down to:
λg. ∀z [man(z) → ∃>1y[*paint-of(y,z)]]

(55) Assertion of (49):

λg. ∀z [man(z) → z knows { ιx[x=A & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=B & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=C & x ≤ σy[*paint-of(y,z)]] is good ,
 ιx[x=D & x ≤ σy[*paint-of(y,z)]] is good }

 This type of disjunctive projection seems possible in other constructions claimed to

involve sets of alternatives, e.g. or.
(56) Every boy1 (either) brought his1 dog or his1 cat.
 a. Potential presupposition 1: Every relevant boy has a dog and a cat.
 b. Potential presupposition 2: Every relevant boy has a dog or a cat.

 More empirical research is needed to assess what projection patterns exist for non-shared

presuppositions in a set of alternatives.

5. Conclusion.
Shan's three problems can be avoided if we make certain assumptions, in particular:

PROBLEM : Overgeneration of functional and pair-list readings.
 Solution: Poesio's (1996) general type <<a,τ>,t>.

PROBLEM : Binding into the wh-phrase from inside the set of alternatives.
 Solution: wh-phrases (Rullmann and Beck 1997) as well as other alternative

"generators" as definite descriptions.

PROBLEM : Binding into the wh-phrase from outside the set of alternatives.
 Solution, to be further tested empirically: non-shared presuppositions in a

set of alternatives (can) project disjuntively.

REFERENCES
Hamblin, C.L. 1973. Questions in Montague grammar, Foundations of Language 10: 41-53.
Kratzer, A. and J. Shimoyama, J. 2002. Indeterminate pronouns: The view from Japanese, paper

presented at the 3rd Tokyo Conference on Psycholinguistics.
Novel, M. and M. Romero. 2009. Movement, variables and Hamblin alternatives, talk at SuB 14. To

appear in M. Prinzhorn et al., eds., Proceedings of SuB 14.
Poesio, M. 1996. Semantic Ambiguity and Perceived Ambiguity, in K. van Deemter and S. Peters,

eds., Semantic Ambiguity and Underspecification. CSLI, Stanford, CA.
Rullmann, H. and S. Beck. 1997. Presupposition projection and the interpretation of which-questions,

Proceedings of SALT VIII.
Shan, C. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics, in

Proceedings of SALT XIV.
Shimoyama, J. 2006. Indeterminate phrase quantification in Japanese, NLS 14:139-173.

