Alternative-based semantics combined with movement: the role of presupposition

Maribel Romero University of Konstanz

(Mostly joint work with Marc Novel)

Workshop on Alternative-Based Semantics Nantes, France, October 29-30, 2010

1. Introduction

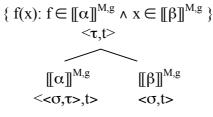
- The following scoping mechanisms (among others) have been proposed in the literature:
 - Syntactic movement
 - Sets of alternatives
- Syntactic movement:

In the syntax, a constituent is displaced and leaves a trace behind. In the semantics, the trace is interpreted as a variable and its λ -binder is introduced by the Predicate Abstraction rule.

- (1) a. Alice saw nobody.b. LF: Nobody 5 [Alice saw t₅]
- (2) Predicate Abstraction (PA): $\lambda x_{e.} [[\gamma]]^{M,gx/i}$

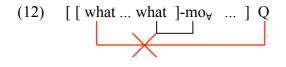
$$\overbrace{i \qquad [\![\gamma]\!]}^{<\!e,\tau>}_{\tau}$$

- (3) a. $[[t_5]]^{M,g} = g(5)$ b. $[[saw]]^{M,g} = \lambda x.\lambda y.see(y,x)$ c. $[[Alice]]^{M,g} = a$ d. $[[Alice saw t_5]]^{M,g} = 1$ iff see(a,g(5))
- e. $\llbracket I \ Alice \ saw \ t_5 \rrbracket^{M,g} = \lambda x.see(a,g^{x/5}(5))$ $= \lambda x.see(a,x)$ f. $\llbracket nobody \rrbracket^{M,g} = \lambda P. \neg \exists z \llbracket P(z) \rrbracket$ g. $\llbracket nobody \ I \ Alice \ saw \ t_5 \rrbracket^{M,g} = 1 \ iff$ $\neg \exists z \llbracket see(a,z) \rrbracket$
- Syntactic movement is sensitive to islands: (4). A c-commanding index of movement *i* binds the trace *t_i* even if another c-commanding index of movement *j* intervenes (provided that *i* ≠ *j*): (5).
- (4) a. * Who₁ did Taro eat the rice cakes that t₁ bought?b. * Who₁ did Taro leave because t₁ came?
- (5) a. Who₁ did Taro send every postcard to t₁?
 b. LF: Who 1 [did [every postcard] 2 [Taro send t₂ to t₁]]


Sets of alternatives:

In the syntax, there is no movement and no trace.

In the semantics, sets of alternative denotations are used, so that the type of expressions is raised from σ to $\langle \sigma, t \rangle$ (Hamblin 1973). Alternatives are combined by point-wise Functional Application until the intended scope is reached. At that point, alternatives may be "bound" or closed off by an associated operator.


(6) Alice saw whom_{in-situ}.

(7) Point-wise functional application:

(8) a.
$$[[whom]]^{M,g} = \{ xavier, yves, zack \}$$

b. $[[saw]]^{M,g} = \{ \lambda x. \lambda y. see(y,x) \}$
c. $[[saw whom]]^{M,g} = \{ \lambda y. see(y, xavier), \lambda y. see(y, yves), \lambda y. see(y, zack) \}$
d. $[[Alice]]^{M,g} = \{ a \}$
e. $[[Alice saw whom]]^{M,g} = \{ see(a, xavier), see(a, yves), see(a, zack) \}$

- Scope via sets of alternatives is insensitive to islands: (9)-(10). (Shimoyama 2006) But it does not tolerate an intervening operator that associates with sets of alternatives: a c-commanding operator cannot associate with a set of alternatives if another ccommanding operator that associates with sets of alternatives intervenes: (11)-(12).
- (9) Taro-wa [[dare-ga katta] mochi]-o tabemasita ka? Taro-Top who-NOM bought rice cake-ACC ate Q
 'Who_x did Taro eat rice cakes that x bought?'
- (10) Taro-wa [[dare-ga kita-kara] kaerimasita ka? Taro-TOP who-NOM came-because left Q 'Who_x did Taro leave because x came?'
- (11) Yoko-wa [[Taro-ga nan-nen-ni nani-nituite kaita ronbun]-mo yuu-datta ka] Yoko-Top [[Taro-Nom what-year-in what-about wrote paper]-MO A-was Q] siritagatteiru. want to know}
 - a. 'Yoko wonders whether for every topic x, every year y, the paper that Taro wrote on x in y got an A.'
 - b. * 'Yoko wonders for which year y, for every topic x, the paper that Taro wrote on x in y got an A.'

- These two scoping mechanisms are often assumed to co-exist in the same language.
 - Syntactic movement: wh-movement, Quantifier Raising (QR), A-movement, etc.
 - Sets of alternatives: indeterminate phrases in Japanese, focus, free choice and epistemic indefinites, etc.

■ The question arises, how we can interpret compositionally structures that involve, at the same time, movement and binding of variables and sets of alternatives.

(14) a. Who saw nobody?b. LF: Nobody 1 [who_{in-situ} saw t₁]

- (15) a. $[[who]]^{M,g} = \{a, b, c\}$ b. $[[who saw t_{I}]]^{M,g} = \{see(a,g(1)), see(b,g(1)), see(c,g(1))\}$ c. $[[I who saw t_{I}]]^{M,g} = ???$ c'. $[[I who saw t_{I}]]^{M,g} = \lambda x. \{see(a,x), see(b,x), see(c,x)\}$ By PA rule (2) d. $[[nobody]]^{M,g} = \{\lambda P_{<e,t>}, \neg \exists z[P(z)]\}$ e. ???
- To combine movement with sets of alternatives, an alternative-friendly Predicate Abstraction (PA) rule needs to be defined. Shan (2004) claims that it is not possible to define such a PA rule. Three problems:

PROBLEM ①: Over-generation of functional and pair-list readings (Shan 2004).

PROBLEM 2: Binding into the "generator" of the set of alternatives (e.g. into an in-situ *wh*-phrase, into a free choice indefinite) by an XP that combines point-wise with that set of alternatives (Shan 2004).

PROBLEM ③: Binding into the "generator" of the set of alternatives by an XP that does not combine point-wise with that set of alternatives (Shan, p.c.).

■ The GOAL of this talk is to show that these three problems can be circumvented if certain (reasonable) assumptions are made. The solution to problem ① is to assume the general type <<a,τ>,t> from Poesio (1996). The key idea to solve problems ② and ③ is that the "generator" of the set of alternatives has the semantics of a definite description, its presupposition playing a central role.

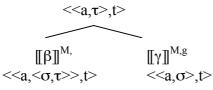
- Plot of the rest of the talk:
 - §2. PROBLEM ① and Poesio's (1996) solution.
 - §3. PROBLEM ⁽²⁾:
 - §3.1. Problem: Binding into a *wh*-phrase from inside the set of alternatives.
 - §3.2. Solution: In-situ *wh*-phrases as definite descriptions (Novel & Romero 2009).
 - §3.3. Extension of the proposed solution to free choice indefinites.
 - §4. PROBLEM ③: Binding into a *wh*-phrase from outside the set of alternatives.
 - §5. Conclusion.

2. PROBLEM ^① and Poesio's (1996) solution.

- Consider (16) again (repeated from (14)): instead of (17), we would need the result in (19) for it to properly combine with [[*nobody*]]^{M,g}.
- (16) a. Who saw nobody?b. LF: Nobody 1 [who_{in-situ} saw t₁]
- (17) $[[1 who_{in-situ} saw t_l]]^{M,g} = \lambda x. \{see(a,x), see(b,x), see(c,x)\}$ By PA rule (2)
- (18) $[[nobody]]^{M,g} = \{\lambda P_{\langle e,t \rangle}, \neg \exists z [P(z)]\}$
- (19) $[[1 who_{in-situ} saw t_1]]^{M,g} = \{ \lambda x.see(a,x), \lambda x.see(b,x), \lambda x.see(c,x) \}$
- A type shifting rule can be defined: (20). But there is a caveat. As Shan notes, a function into sets (type <e,<\u03cc,t>>) carries less information with respect to ordering compared to a set of functions (type <e,\u03cc,t>). If we transpose (17) using the shifting rule in (20), the resulting set will contain uniform <e,t>-functions like the ones in (21), but also non-uniform <e,t>-functions like the ones in (22) with different values for the subject.

$$(20) \quad \lambda Q_{<\!e,<\!\tau,t\!>>} \{ f_{<\!e,\tau\!>} : \forall x_e[f(x) \in Q(x)] \}$$

(21)
$$\begin{array}{ccc} x_1 \rightarrow saw(a,x_1) \\ x_2 \rightarrow saw(a,x_2) \\ x_3 \rightarrow saw(a,x_3) \end{array} \begin{array}{ccc} x_1 \rightarrow saw(b,x_1) \\ x_2 \rightarrow saw(b,x_2) \\ x_3 \rightarrow saw(b,x_3) \end{array} \begin{array}{ccc} x_1 \rightarrow saw(c,x_1) \\ x_2 \rightarrow saw(b,x_2) \\ x_3 \rightarrow saw(b,x_3) \end{array}$$


- (22) $\begin{bmatrix} x_1 \rightarrow saw(a,x_1) \\ x_2 \rightarrow saw(c,x_2) \\ x_3 \rightarrow saw(b,x_3) \end{bmatrix} \begin{bmatrix} x_1 \rightarrow saw(a,x_1) \\ x_2 \rightarrow saw(b,x_2) \\ x_3 \rightarrow saw(c,x_3) \end{bmatrix} \begin{bmatrix} x_1 \rightarrow saw(a,x_1) \\ x_2 \rightarrow saw(a,x_2) \\ x_3 \rightarrow saw(c,x_3) \end{bmatrix}$
- In the literature, an alternative-friendly PA-rule exists that incorporates this transposing (Hagstrom 1998, Kratzer and Shimoyama 2002).

- PROBLEM ①: Shan (2004) shows that including non-uniform functions leads to an empirical problem: unwanted functional and pair-list readings in e.g. (24).
- (24) Q: Who saw nobody?
 A: # His1 mother saw nobody1.
 A': # Alice didn't see Xavier, Caroll didn't see Yves, and Barbara didn't see Zack.

■ Poesio's (1996) general type <<a,τ>,t>. Poesio proposes that, when using set of alternatives, we use assignment-sensitive denotations like (25). This way, it is possible to have the general type <<a,τ>,t> with the set layer as the outermost and the assignment layer inside. With this general type

template, the Funtional Application rule (26) is used and the PA-rule (27) can be defined.

- (25) a. $\llbracket t_{1, \langle a, e \rangle} \rrbracket^{M} = \lambda g_{a.} g(1)$ b. $\llbracket saw_{\langle a, \langle e, \langle e, t \rangle \rangle \rangle} \rrbracket^{M} = \lambda g_{a.} \lambda x_{e.} \lambda y_{e.} see(y, x)$
- (26) Point-wise, assignment-sensitive Functional Application rule: $\{ \lambda g.f(g)(x(g)) : f \in [[\beta]]^M \land x \in [[\gamma]]^M \}$

- (27) Poesio's alternative-friendly PA-rule: $\{ \lambda g. \lambda x. f(g^{x/i}) : f \in [[\gamma]]^M \}$ $\leq <a, <e, \tau >>, t >$ i $[[\gamma]]^{M,g}$
- (28) a. LF: Nobody 1 [who_{in-situ} saw t₁] b. [[who saw t₁]]^M = { λ g.see(a,g(1)), λ g.see(b,g(1)), λ g.see(c,g(1)) } c. [[1 who saw t₁]]^M = { λ g. λ x.see(a,g^{x/1}(1)), λ g. λ x.see(b,g^{x/1}(1)), λ g. λ x.see(c,g^{x/1}(1)) } = { λ g. λ x.see(a,x), λ g. λ x.see(b,x), λ g. λ x.see(c,x) } d. [[nobody]]^M = { λ g. λ P_{<e,t>}. \neg \exists z[P(z)] } e. [[nobody 1 who saw t₁]]^M = { λ g. \neg \exists z[see(a,z)], λ g. \neg \exists z[see(c,z)] }

 \Rightarrow (28c) contains only uniform functions, hence PROBLEM \oplus is solved.

3. PROBLEM ⁽²⁾.

3.1. Problem: Binding into a wh-phrase from inside the set of alternatives

- Shan (2004) points out a second problem for Kratzer and Shimoyama's PA-rule which also applies to Poesio's. The problem arises when we need to bind a variable inside the phrase generating the non-singleton set of alternatives, e.g. the in-situ *wh*-phrase in (29):
- (29) a. Which man₁ sold which of his₁ paintings?b. LF: Which man 1 [t₁ sold which of his₁ paintings]?
- In (29), for each man, the set of paintings is different. Intuitively (and leaving assignments aside for the moment), we would need (30). But this gives us (31), which has the problematic $\langle e, \langle \tau, t \rangle \rangle$ again.

(30) $[[1 [t_1 sold which of his_1 paintings]]]^{M} =_{e.g.}$

```
Velázquez → {Velázquez sold Las Meninas, Velázquez sold The Surrender of Breda}

Picasso → {Picasso sold Guernica, Picasso sold Three Musicians}

...
```

- (31) $[[1 [t_1 sold which of his_1 paintings]]^M = \lambda x. \{x \text{ sold } y: y \text{ is a painting of } x\}$
- Additionally, binding into the *wh*-phrase and QR can take place in the same sentence, as in (32). This means that the type <<e, τ>,t> needed for QR and the problematic type <e, <τ,t>> needed for binding into the *wh*-phrase would have to be interleaved.
- (32) a. Which man₁ told nobody about which of his₁ paintings?
 b. LF: Which man 1 nobody [2 t₁ told t₂ about which of his₁ paintings]<<e,t><<e,t>,t>
 c. { λy. g(1) told y about z: z is a painting of g(1) }
 d. LF: Which man [1 nobody 2 t₁ told t₂ about which of his₁ paintings]<e,<t,t>>
 e. λx. { x told nobody about z: z is a painting of x }

3.2. Proposed solution: in-situ wh-phrases as definite descriptions.

- Rullmann and Beck (1997) note that *wh*-phrases project existence presuppositions the way definite descriptions do: (33)-(34). They propose to leave *wh*-phrases in their base position and treat them semantically as definites, as in (35b).
- (33) a. Bill knows_{HOLE} he caught the unicorn.b. Bill thinks_{PLUG} he caught the unicorn.
- (34) a. Which unicorn did Bill know_{HOLE} he caught?b. Which unicorn did Bill think_{PLUG} he caught?
- (35) a. $[[the man Sam]]^{M,g} =$ the $(\lambda y. man(y,w) \land y=Sam)$ b. $[[which man_i]]^{M,g} =$ the $(\lambda y. man(y,w) \land y=x_i)$
- Solution to PROBLEM ② (already proposed in Novel and Romero 2009). We combine Poesio's general type <<a,τ>,t> and PA-rule with Rullmann and Beck's treatment of *wh*-phrases as definites. That is, a *wh*-phrase does not denote a set of assignment-sensitive name-like denotations anymore, as in (36), but a set of assignment-sensitive definite description-like denotations, as in (37).

(36)
$$\llbracket who \rrbracket^{M} = \{ \lambda g.x : x \in D_{e} \}$$
$$=_{e.g.} \{ \lambda g.a(lice), \lambda g.b(arbara), \lambda g.c(aroll) \}$$
(37)
$$\llbracket who \rrbracket^{M} = \{ \lambda g.\iotav[person(v) \land v=x] : x \in D_{e} \}$$
$$=_{e.g.} \{ \lambda g.\iotav[person(v) \land v=a], \lambda g.\iotav[person(v) \land v=b], \lambda g.\iotav[person(v) \land v=c] \}$$

■ Wh-phrases as introducing sets of potentially partial functions: When the wh-phrase contains a pronoun bound from the outside, the <a,e>-functions in the set of alternatives will be partial. Consider (38), where G stands for Guernica and LM for Las Meninas. The first <a,e>-function in (38b) will map an assignment g to Guernica if g(1)=Picasso, and it will be undefined otherwise. That is, the set of alternatives will contain as many <a,e>-functions as there are individuals in D_e. But those functions will be partial: they will output an individual d only when d is a painting of g(1)'s.

(38)
$$[[which of his_1 paintings]]^M$$

a. = { $\lambda g.v[painting-of(v,g(1)) \land v=x] : x \in D_e$ }
b. =_{e.g.} { $\lambda g.v[painting-of(v,g(1)) \land v=G], \lambda g.v[painting-of(v,g(1)) \land v=LM], \dots$ }

■ Full semantic computation of first problematic example:

- (40)Poesio's alternative-friendly PA-rule: (=(27)) $\{ \lambda g. \lambda x. f(g^{x/i}) : f \in \llbracket \gamma \rrbracket^{\check{M}} \}$ <<a,<e, \t>, t> [[γ]]^{M,g} <<a,τ>,t> i a. [[sold]]^M (41) = { $\lambda g. \lambda x. \lambda y. y \text{ sold } x$ } b. [[sold which of his_1 paintings]]^M = { $\lambda g.\lambda y. y \text{ sold } \iotav[\text{paint-of}(v,g(1)) \land v=G],$ $\lambda g.\lambda y. y \text{ sold } \iota v[\text{paint-of}(v,g(1)) \land v=LM] \}$ c. $\llbracket t_I \rrbracket^M$ $= \{ \lambda g. g(1) \}$ d. $[t_1 \text{ sold which of his}_1 \text{ paintings}]^M = \{ \lambda g. g(1) \text{ sold } \iotav[\text{paint-of}(v,g(1)) \land v=G],$ $\lambda g. g(1) \text{ sold } \iota v[\text{paint-of}(v,g(1)) \land v=LM] \}$ e. $[[1 t_1 sold which of his_1 paintings]]^M$ $= \{ \lambda g.\lambda x. g^{x/l}(1) \text{ sold } v[\text{paint-of}(v, g^{x/l}(1)) \land v=G], \\ \lambda g.\lambda x. g^{x/l}(1) \text{ sold } v[\text{paint-of}(v, g^{x/l}(1)) \land v=LM] \}$ = { $\lambda g.\lambda x. x \text{ sold } \iota v[\text{paint-of}(v,x) \land v=G],$ $\lambda g.\lambda x. x \text{ sold } \iota v[\text{paint-of}(v,x) \land v=LM] \}$ f. [[which man]]^M = { $\lambda g.\iota z[man(z) \land z=Picasso],$ $\lambda g.\iota z[man(z) \land z=Velázquez]$ g. [[which man 1 t_1 sold which of his_1 paintings]]^M = { $\lambda g. \iota z[man(z) \land z=Picasso] \text{ sold } \iota v[paint-of(v, \iota z[man(z) \land z=Picasso]) \land v=G],$ $\lambda g. \iota z[man(z) \land z=Picasso]$ sold $\iota v[paint-of(v,\iota z[man(z) \land z=Picasso]) \land v=LM], #$ $\lambda g. \iota z[man(z) \land z=Velázquez]$ sold $\iota v[paint-of(v,\iota z[man(z) \land z=Velázquez]) \land v=G], #$ $\lambda g. \iota z[man(z) \land z=Velázquez]$ sold $\iota v[paint-of(v, \iota z[man(z) \land z=Velázquez]) \land v=LM]$
 - Some of alternatives in (41g) are presupposition failures (marked as #). (41g) captures Shan's intuition that, for a man x, we can only felicitously choose among x's paintings, and it does so while avoiding the problematic type <e,<τ,t>>. PROBLEM ② is solved.

■ Full semantic computation of problematic example allegedly with interleaving types:

- (42) a. Which man₁ told nobody about which of his₁ paintings? (=(32))
 b. LF: Which man 1 [nobody 2 [t₁ told t₂ about which of his₁ paintings]]
- (43) a. [[told]]^M { $\lambda g.\lambda x.\lambda y.\lambda z. z \text{ told } x \text{ about } y$ } b. $[t_2]^M = \{ \lambda g. g(2) \}$ c. $[told t_2]^M =$ { $\lambda g.\lambda y.\lambda z. z$ tells g(2) about y } d. [[which of his_1 paintings]]^M = { $\lambda g. \iota v$ [painting-of(v,g(1)) $\land v=x$] : $x \in D_e$ } e. $[[tell t_2 about which of his_1 paintings]]^M =$ = { $\lambda g.\lambda z. z \text{ tells } g(2) \text{ about } iv[paint-of(v,g(1)) \land v=x] : x \in D_e$ } f. $[t_1 tell t_2 about which of his_1 paintings]]^M =$ = { $\lambda g. g(1)$ tells g(2) about $\iota v[paint-of(v,g(1)) \land v=x] : x \in D_e$ } g. $[[2 t_1 tell t_2 about which of his_1 paintings]]^M =$ = { $\lambda g. \lambda u_e. g^{u/2}(1)$ tells $g^{u/2}(2)$ about $\iotav[paint-of(v,g^{u/2}(1)) \land v=x] : x \in D_e$ } = { $\lambda g. \lambda u_e. g^{u/2}(1)$ tells u about $\iotav[paint-of(v,g^{u/2}(1)) \land v=x] : x \in D_e$ } h. $[nobody]^{M} = \{ \lambda g. \lambda P_{\langle e, i \rangle}, \neg \exists u [P(u)] \}$ i. [[nobody 2 t_1 tell t_2 about which of his paintings]]^M = = { $\lambda g. \neg \exists u [g^{u/2}(1) \text{ tells } u \text{ about } iv[paint-of(v, g^{u/2}(1)) \land v=x]] : x \in D_e$ } j. $[[1 nobody 2 t_1 tell t_2 about which of his_1 paintings]]^M =$ = { $\lambda g. \lambda w_e. \neg \exists u [g^{w/1 u/2}(1) tells u about vv[paint-of(v,g^{w/1 u/2}(1)) \land v=x]] : x \in D_e$ } = { $\lambda g. \lambda w_e. \neg \exists u [w \text{ tells } u \text{ about } \iota v[paint-of(v,w) \land v=x]] : x \in D_e$ } k. [[which man]]^M = { $\lambda g. \iota y[man(y) \land y=z] : z \in D_e$ } 1. [[which man 1 nobody 2 t_1 tell t_2 about which of his paintings $\mathbb{I}^M =$ = { λg . $\neg \exists u [vy[man(y) \land y=z]$ tells u about $v[paint-of(v, vy[man(y) \land y=z]) \land$ v=x]: $x \in D_e \land z \in D_e$ }

3.3. Extension of the proposed solution to free choice indefinites.

- Kratzer and Shimoyama (2002) propose that free choice NPs like German *irgendeinen Studenten* in (44) are interpreted as introducing a (widened) set of students: (45). The set of alternatives is closed off when the relevant operator is encountered, e.g. *kann* 'can'.
- (44) Hans kann irgendeinen Studenten besuchen.Hans can anyone student visit. 'Hans can visit any student.'
- (45) [[*irgendein Student*]]^{M,g} = {x: x is a student in w}
- There exist examples where we need to bind into a free choice indefinite, that is, examples with the problematic configuration described in PROBLEM 2: (46). To circumvent the problem, one would need to treat free choice indefinites as underlying *definites*: (47).
- (46) a. John can introduce any student₁ to any professor of his₁.
 b. LF: Can [any student 1 John introduces t₁ to any professor of his₁]
- (47) $[[any professor of his_1]]^M = \{ \lambda g.v[prof-of(v,g(1)) \land v=x] : x \in D_e \}$
- In fact, Rullmann and Beck's diagnosis applies to free choice indefinites as well:
- (48) a. John is looking_{PLUG} for the whitest unicorn.b. John can look_{PLUG} for any unicorn.

4. PROBLEM 3: Binding into a *wh*-phrase from outside the set of alternatives.

- Shan (p.c.) wonders how the proposed analysis fares when binding into the "generator" of the set of alternatives is done by an XP that does not combine point-wise with that set of alternatives. PROBLEM ③: he asks how we analyse (49) and predict the infelicity of (50).
- (49) Every man₁ wonders / knows which of his₁ paintings is good.
- (50) #Every man₁ wonders / knows which of his₁ hearts is good.

Abridged computation of (49) under the proposed analysis:

- ⇒ Note that, for any value of g(1) in (51a), each of the functions in the embedded set shares the presupposition that g(1) has more than one painting. Projecting up to λz and *everyone*, the sentence presupposes that everyone relevant has more than one painting, as in (52). This explains #(50).
- (52) $\lambda g.\lambda z: \exists_{>1}y[*paint-of(y,z)]. z \text{ knows }...$
 - ⇒ Note that, for any value of of g(1) in (51a), each of the embedded functions raises a *different* presupposition about the identity of the ux element.

How should these non-shared presuppositions project?

- Towards a solution: We could make these non-shared atomic presuppositions project as a disjunctive presupposition, as in (53). The overall presupposition and assertion of (49) would then be as in (54)-(55).
- (53) $\lambda g.\lambda z: (A \le \sigma y[*paint-of(y,z)] \vee B \le \sigma y[*paint-of(y,z)] \vee C \le \sigma y[*paint-of(y,z)] \vee D \le \sigma y[*paint-of(y,z)]).$ z knows ...

(54) Presupposition of (49): $\lambda g. \forall z [man(z) \rightarrow \exists_{>1}y[*paint-of(y,z)] \land [A \leq \sigma y[*paint-of(y,z)] \lor B \leq \sigma y[*paint-of(y,z)] \lor C \leq \sigma y[*paint-of(y,z)] \lor D \leq \sigma y[*paint-of(y,z)]]]$ This boils down to: $\lambda g. \forall z [man(z) \rightarrow \exists_{>1}y[*paint-of(y,z)]]$

- (55) Assertion of (49): $\lambda g. \forall z \text{ [man(z)} \rightarrow z \text{ knows } \{ \text{ ux} \text{ [} x=A \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=B \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=C \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\
 \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good }, \\ \text{ ux} \text{ [} x=D \& x \leq \sigma y[*paint-of(y,z)]] \text{ is good },$
- This type of disjunctive projection seems possible in other constructions claimed to involve sets of alternatives, e.g. *or*.
- (56) Every boy₁ (either) brought his₁ dog or his₁ cat.
 a. Potential presupposition 1: Every relevant boy has a dog and a cat.
 b. Potential presupposition 2: Every relevant boy has a dog or a cat.
- More empirical research is needed to assess what projection patterns exist for non-shared presuppositions in a set of alternatives.

5. Conclusion.

Shan's three problems can be avoided if we make certain assumptions, in particular:

PROBLEM Φ : Overgeneration of functional and pair-list readings.

 \Rightarrow Solution: Poesio's (1996) general type $<<a, \tau>, t>$.

- PROBLEM **(2)**: Binding into the *wh*-phrase from inside the set of alternatives.
 - Solution: wh-phrases (Rullmann and Beck 1997) as well as other alternative "generators" as definite descriptions.
- PROBLEM ③: Binding into the *wh*-phrase from outside the set of alternatives. ⇒ Solution, to be further tested empirically: non-shared presuppositions in a
 - set of alternatives (can) project disjuntively.

References

- Hamblin, C.L. 1973. Questions in Montague grammar, Foundations of Language 10: 41-53.
- Kratzer, A. and J. Shimoyama, J. 2002. Indeterminate pronouns: The view from Japanese, paper presented at the *3rd Tokyo Conference on Psycholinguistics*.
- Novel, M. and M. Romero. 2009. Movement, variables and Hamblin alternatives, talk at SuB 14. To appear in M. Prinzhorn et al., eds., *Proceedings of SuB 14*.
- Poesio, M. 1996. Semantic Ambiguity and Perceived Ambiguity, in K. van Deemter and S. Peters, eds., *Semantic Ambiguity and Underspecification*. CSLI, Stanford, CA.
- Rullmann, H. and S. Beck. 1997. Presupposition projection and the interpretation of which-questions, *Proceedings of SALT VIII.*
- Shan, C. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics, in *Proceedings of SALT XIV.*
- Shimoyama, J. 2006. Indeterminate phrase quantification in Japanese, NLS 14:139-173.