
A PARALLEL-DERIVATIONAL
ARCHITECTURE FOR THE

SYNTAX-SEMANTICS INTERFACE

Carl Pollard
INRIA-Lorraine and Ohio State University

ESSLLI 2008 Workshop on
What Syntax Feeds Semantics

Hamburg, August 14, 2008

These slides are available at:

http://www.ling.ohio-state.edu/∼pollard/cvg/para-slides.pdf

1

(1) Back in 1970:

• Montague’s “Universal Grammar” and “English as a Formal Lan-

guage” were published, proposing that NL syntactic derivations
(analysis trees) and their meanings were constructed in parallel.

In particular, there was nothing ‘between’ syntax and semantics.

• Chomsky’s “Conditions on Transformations” (not published till

1973) introduced the T-model, in which interpretive rules applied
between SS and LF:

Phonetics ← PF ← SS → LF → Semantics

↑

DS

↑

LEX

2

(2) The Cascade

Straightening the right arm of the T and suppressing the left arm:

Semantics

↑?

LF

↑C

SS

↑O

DS

↑M

LEX

with the subscripts on the arrows distinguishing the three rule cycles

(with more modern names) Merge, Overt Move, and Covert Move.

3

(3) A Convergence of Views

• The Cascade has long since been rejected—by all—because (in

mainstream parlance) the three kinds of operations have to be
intermingled: merges must be able to follow moves, and overt
moves must be able to follow covert ones. Therefore:

• – There is only a single cycle of operations.

– DS and SS do not exist.

– There are multiple points in a derivation where the syntax
connect to the interface systems.

• The Minimalist Program (MP) is one framework for filling in the

details of this consensus view.

• This talk is about a different one, worked out within the framework
of Extended Montague Grammar (EMG) about 30 years ago.

4

(4) Three Signal Achievments of EMG

• Cooper’s (1975) storage replaced covert movement.

• Gazdar’s (1979) linking schemata replaced overt movement.

• Bach and Partee (1980) incorporated both into a PSG-based ac-
count of (what would later be called) binding theory facts, which

anticipated later categorial treatments.

5

(5) Why Reconstruct EMG?

• EMG had already correctly perceived many of the main defects of

the T-model and had good proposals for fixing them.

• But 30 years later, central EMG tenets (such as nonexistence of
movement and of LF) remain outside the “mainstream”.

• So the case for EMG needs to be made anew.

• A promising approach is to reformulate the EMG ideas using an
especially transparent formalism: Gentzen natural deduction

with Curry-Howard proof terms (hereafter just ND).

6

(6) Easier than it Sounds

• The proof trees look just like familiar phrase markers.

• Each node in the tree is labelled with two terms, a syntactic one

and a semantic one.

• The syntactic term is just a slightly upgraded version of a 1970’s-

style labelled bracketting.

• The semantic term is just an ordinary lambda term.

• The leaves are either lexical entries or traces.

• Each non-leaf node is licensed by a rule that constructs that nodes‘s
syntactic (semantic) term from the syntactic (semantic) terms of

the daughters.

7

(7) Reformulating EMG using ND

• We have two logics, each with its own ND proof theory, which

specify (respectively) candidate syntactic and semantic terms.

• The syntax-semantics interface recursively defines the set of
syntactic/semantic term-pairs that belong to the NL in question.

• We call those pairs the signs of the NL.

• The signs are the inputs to the interpretive interfaces:

– the syntactic component is phonetically interpreted, and

– the semantic component is semantically interpreted.

• We call this style of grammar Convergent Grammar (CVG).

8

(8) Parallel-Derivational (PD) Artchitecture

phonetics

↑

Syn

Syn candidates → + ← Sem candidates
Sem

↓

semantics

9

(9) Time is Short

• So if you want to know what the syntactic and semantic rules look

like in isolation, you will have to read the handout.

• Here we skip straight to the syntax-semantics interface rules, which
are just pairings of syntactic rules with semantic rules.

• Then we’ll look at some representative analyses:

10

(10) Some Lexical Entries (0-ary Rules)

⊢ Chris, Chris’ : NP, e

⊢ everyone, everyone’ : NP, et
t ⊣

⊢ someone, someone’ : NP, et
t

⊢ liked, like’ : NP ⊸c NP ⊸s S, e→ e→ t

⊢ thought, think’ : S ⊸c NP ⊸s S, π → e→ t

Note: Semantic types of the form AC
B are for in-situ operators that

bind an A-variable in a B, forming a C.

This differs from Moortgat’s q(A, B, C) or Barker-Shan’s C ((A) B)

because those are syntactic categories: on our account the syntactic
category of a QNP is just NP.

11

(11) Schema Ms (Subject Modus Ponens, version 1)

If ⊢ a, c : A, C ⊣ and ⊢ f, v : A ⊸s B, C → D ⊣,

then ⊢ (s a f), (v c) : B, D ⊣

Heads combine with subjects semantically by function application.

12

(12) Schema Ms (Subject Modus Ponens, final version)

If Γ ⊢ a, c : A, C ⊣ ∆ and Γ′ ⊢ f, v : A ⊸s B, C → D ⊣ ∆′,

then Γ; Γ′ ⊢ (s a f), (v c) : B, D ⊣ ∆; ∆′

Heads combine with subjects semantically by function application.

Contexts (unbound traces) and co-contexts (Cooper-stored operators)

get passed up (as in old-fashioned PSG).

13

(13) Schema Mc (Complement Modus Ponens)

If Γ ⊢ f, v : A ⊸c B, C → D ⊣ ∆ and Γ′ ⊢ a, c : A, C ⊣ ∆′,

then Γ; Γ′ ⊢ (f a c), (v c) : B, D ⊣ ∆; ∆′

Just like the preceding but for complements instead of subjects.

These schemata (and their counterparts for other grammatical func-

tions) are our analogs of Merges in TG.

14

(14) A Simple Sentence

a. Chris thinks Kim likes Dana.

b. ⊢ (s Chris (thinks (s Kim (likes Dana c) c))) :

((think’ ((like’ Dana’) Kim’)) Chris’) : S, t ⊣

15

(15) Schema C (Cooper Storage)

If Γ ⊢ a, b : A, BD
C ⊣ ∆, then Γ ⊢ a, x : A, B ⊣ bx : BD

c ; ∆ (x fresh)

When a semantic operator is stored, nothing happens in the syntax.

(16) Schema R (Retrieval)

If Γ ⊢ e, c[x] : E, C ⊣ bx : BD
C ; ∆ then Γ ⊢ e, (bxc[x]) : E, D ⊣ ∆

When a semantic operator is retrieved, nothing happens in the syntax.

These two schemata are our analog of Covert Movement in TG.

16

(17) Cooper Storage, Natural-Deduction Style
S

NP

Ira

NP ⊸s S

NP ⊸c NP ⊸s S

caught

NP

N ⊸sp NP

a

N

chipmunk

a’(chipmunk’)x(catch’(x)(Ira’))

catch’(x)(Ira’) ⊣ a’(chipmunk’)x

Ira’ catch’(x) ⊣ a’(chipmunk’)x

catch’ x ⊣ a’(chipmunk’)x

a’(chipmunk’)

a’ chipmunk’

Terms of form axb translate into typed lambda calculus as a(λx.b).

17

(18) Quantifier Scope Ambiguity

a. Syntax (both readings):

(s Chris (thinks (s Kim (likes everyone c) c))) : S

b. Semantics (scoped to lower clause):

((think’ (everyone’x((like’ x) Kim’))) Chris’)

TLC: think’(λw(∀x(person′(x)(w)→ like’(x)(Kim’)(w))))(Chris’)

c. Semantics (scoped to upper clause):

(everyone’x((think’ ((like’ x) Kim’)) Chris’))

TLC: λw(∀x(person’(x)(w)→ think’(like’(x)(Kim’))(Chris’)(w)))

Note: Meaning postulates and normalization are used to obtain the
TLC translations of the CVG semantic terms.

18

(19) Schema T (Trace)

t, x : A, B ⊢ t, x : A, B ⊣ (t and x fresh)

Traces are paired with semantic variables at birth.

Compare with the MP, where traces must undergo a multistage process
of trace conversion in order to become semantically interpretable.

Logically, t and x are just variables, with no internal structure (the
standard ND treatment of hypotheses in proofs).

19

(20) Schema G (Gazdar Schema)

If Γ ⊢ a, d : AC
B, DF

E ⊣ ∆ and t, x : B, D; Γ′ ⊢ b, e : B, E ⊣ ∆′,

then Γ; Γ′ ⊢ (atb), (dxe) : C, F ⊣ ∆, ∆′

(t free in b, x free in e)

This schema together with the Trace Schema are our analog of Covert
Movement in TG.

‘Overtly moved’ signs are operators, both syntactically and semanti-
cally, and scope in parallel.

Important: The operator a binds the trace t, but there is no con-
strual of the words ‘move’ or ‘copy’ under which a moved from the

argument position t occupies, or copied t.

20

(21) Some Wh-Lexicon

⊢ whether, whether’ : S ⊸m S, π → κ ⊣

⊢ wondered, wonder’n : S ⊸c NP ⊸s S, κn → ι→ π ⊣

⊢ whofiller, who0 : NPQ
S , ικ1

π ⊣

⊢ whoin-situ, whon : NP, ι
κn+1

κn
⊣ (for n > 0)

⊢ whatfiller, what0 : NPQ
S , ικ1

π ⊣

⊢ whatin-situ, whatn : NP, ι
κn+1

κn
⊣ (for n > 0)

21

(22) Consequences of the Preceding Lexical Entries

• There can be no purely in-situ interrogatives (leaving aside prag-

matically restricted, intonationally marked ones which we cannot
go into here):

*I wonder Fido bit who?

• A wh-expression cannot scope, either overtly or covertly, over a

polar interrogative:

*I wonder whether Fido bit who?

*I wonder who whether Fido bit?

• In each constituent interrogative, only one ‘overtly moved’ wh-
expression can take scope there:

*I wonder who who(m) bit?

22

(23) More Consequences

• Arbitrarily many in-situ wh-expressions can take their semantic

scope at a given consituent interrogative:

Who gave what to who when?

• There are (Baker) ambiguities that hinge on how high an in-situ
wh-expression scopes:

Who wondered who bit who?

• Even though subject wh-expressions might look in situ:

Who barked?

they aren’t really; if they were, they could also scope higher to
form imposssible embedded questions as in:

*Kim wondered Chris thought who barked?

(Intended meaning: Kim wondered who Chris thought barked.)

23

(24) Wh-In Situ Languages

In languages without overt wh-movement, the counterpart of who is
just an NP with all the meanings whon (n ≥ 0), including who0.

That is: the difference between overt and covert wh-movement lan-
guages is in the lexicon.

24

(25) An Embedded Polar Question

a. Syntax: ⊢ (whether (s Kim (likes Sandy c)) c) : S

b. Semantics: ⊢ (whether’ (like’ Sandy’ Kim’)) : κ0

25

(26) An Embedded Constituent Question

a. Syntax: ⊢ [whatfiller t(
s Kim (likes t c))] : S

b. Semantics: ⊢ (what0y((like’ y) (Kim’)) : κ1

(27) A Binary Constituent Question

a. Syntax: ⊢ [whofiller t(
s t (likes whatin-situ

c))] : S

b. Semantics: ⊢ (what1y(who0
x((like’ y) (x))) : κ2

26

(28) Baker Ambiguity

a. ⊢ [whofiller t(
s t (wonders [whofiller t′(

s t′ (likes whatin-situ
c))] c))] : S

b. ⊢ (who0
x((wonder’2 (what1y(who0

z((like’ y) z)))) x)) : π

(E.g. Chris wonders who likes what.)

c. ⊢ (what1y(who0
x((wonder’1 (who0

z((like’ y) z))) x)))) : π

(E.g. Chris wonders who likes the books, and Kim wonders who

likes the records.)

27

(29) Raising of Two Quantifiers to Same Clause

a. Syntax (both readings): (s everyone (likes someone c)) : S

b. ∀∃-reading: (everyone’x(someone’y((like’ y) x)))

c. ∃∀-reading: (someone’y(everyone’x((like’ y) x)))

28

(30) Abbreviated Notation for Functional Types

Where σ ranges over strings of types and ǫ is the null string:

i. Aǫ =def A

ii. ABσ =def B → Aσ (e.g. tee = e→ e→ t)

iii. For n ∈ ω, An =def Aσ where σ is the string of e’s of length n

Example: t2 =def tee =def e→ e→ t.

29

(31) A Refinement

• Actually the QNP meanings have to be polymorphically typed

to etσ

tσ

where σ ranges over strings of types, since quantifiers can
retrieved not just at proposition nodes, but also at nodes with
functional types whose final result type is proposition.

• An important case is σ = e: quantifiers can be retrieved at nodes

which are semantically individual properties (te = e→ t), such as
VPs and Ns:

a. [Campaigning in every state] is prohibitively expensive.

b. Every [owner of a donkey] walks.

30

(32) An NP-Internal Scope Example

a. The NP-internal-scope reading of the previous example

(b) Every owner of a donkey walks.

is analyzed unproblematically by retrieving a’(donkey’) at the N̄

node and the every-quantifier at the S-node.

b. The resulting semantic term is

every’(a’(donkey’)e
y.own’(y)(x))x.walk’

c. This normalizes to the TLC term

∀x.(∃y.donkey’(y) ∧ own’(y)(x))→ walk’(x)

31

(33) Scoping Out of NP

a. The scoping-out-of-NP reading of

(b) Some owner of every donkey walks.

is analyzed unproblematically by scoping some’(own’(y))x over walk’(x)

at the S node and then scoping every’(donkey’)y over it.

b. The resulting semantic term is

every’(donkey’)y.some’(own’(y))x.walk’(x)

c. This normalizes to the TLC term

∀y.donkey’(y)→ ∃x.own’(y)(x) ∧ walk’(x)

32

(34) A Scope “Reconstruction” Example (1/3)

a. I wonder [how many cats]t John thought Mary saw t.

b. The interrogative part of the meaning of how many must scope at

the intermediate clause (complement of wonder), but the cardinal-
ity part can scope in the lowest clause (complement of thought).

c. This is problematic for a model where QR follows Spellout, since
we hear the cardinality word many in the intermediate clause.

d. The rules we already have analyze such examples unproblemati-

cally as long as we assign the right meaning to how many.

e. All we have to do is (a) posit a trace whose semantic variable
has the type of a generalized quantifier, and (b) Cooper-store the

trace’s semantic term (that same quantifier variable).

33

(35) A Scope Reconstruction Example (2/3)

a. For specificity, we analyze cardinality determiners (e.g. five) se-

mantically as cd(5) where cd is subject to the meaning postulate

⊢ cd = λn.λP .λQ.card(λy.P (y) ∧ Q(y)) ≥ n

b. The constant howmany’ is subject to the meaning postulate

⊢ howmany’ = λP .λZ .which’(number’)(λn.Z(cd(n)(P)))

where Z is a variable of type et
t → t.

b. We let the semantic variable of the trace that how many cats will
bind have the type of a generalized quantifier:

t, Q : NP, et
t ⊢ t, Q ⊣

c. We immediately Cooper-store the trace’s semantic term:

t, Q : NP, et
t ⊢ t, x : NP, e ⊣ Qx : et

t

Now Q is in both the context and the co-context simultaneously.

34

(36) A Scope Reconstruction Example (3/3)

a. Remember the example we are analyzing is

I wonder [how many cats]t John thought Mary saw t.

b. After we retrieve Q (the semantic variable of the trace) from the

co-context at the lowest clause, it is still in the context:

t, Q ⊢ (s Mary (saw tc)), Qx.saw’(x)(Mary’)

c. At the John thought Mary saw t node, the semantic term is

think’(Qx.see’(x)(Mary’))(John’)

and Q is still in the context.

d. Finally we use the Gazdar (‘Overt Movement’) schema to bind Q

with the semantic term of how many cats, which yields:

which’(number’)x.think’(cd(n)(cat’)(λx.saw’(x)(Mary’)))(John’)

35

(37) Parasitic Scope

• Barker (2008) introduces this term to describe quantifiers such as

the same and different whose ‘scope target does not exist until
[another quantifier] takes its scope’.

• Other instances of this phenomenon include superlatives and
elliptical constructions such as phrasal comparatives.

• Barker’s analysis uses continuations and choice functions.

• We propose an account based on a notion of focus exploitation.

36

(38) Semantic Operizers

• Recall that a semantic operator is a term whose type is of the

form AC
B.

• We define an operizer to be a functional term whose result type
is an operator type.

• An operator can be thought of as a 0-ary operizer.

• Intuitively, an operizer is a ‘movement trigger’: it converts its
argument into something that ‘has to move’ to take scope.

37

(39) Some Signs with Operizer Semantics

• ordinary determiners: type (e→ t)→ et
t

• ‘overtly moved’ interrogative determiner which: type (e → t) →

ee→π→t
π (where π =def s→ t).

• (non-phrasal) comparative -er, assuming the than-phrase comple-

ment denotes a set of degrees: type (d→ t)→ dt
t.

• Following (in spirit) Moortgat 1991, we can analyze pragmatic
focus as an intonationally realized phrasal affix whose semantics

has the (polymorphic) operizer type B → Bt
t.

38

(40) Semantic Focus as an Operizer ‘Wild Card’

• We suggest treating semantic focus as an operizer ‘wild card’

whose instantiation depends on what other sign is exploiting it.

• Best-known is the case of ‘particles’ (only, even, too) discussed
under the rubric of ‘association with focus’, where the focus in-
stantiator (FI) is just the semantics of the particle itself.

• Here we consider more complex cases of parasitic scope, where

the focus exploiter (FE) ‘contributes’ two operizers: one its own
semantics and the other the FI; the focused phrase is called the

asscociate.

• In still more complex—elliptical—cases to be treated elsewhere,
the FI takes two arguments: the associate and the FE’s (extra-

posed) complement, called the remnant.

39

(41) A New Grammatical Function for Phrasal Affixation

• We add to the inventory of gramfuns the name affix (abbr. a),

mnemonic for ‘(phrasal) affixation’.

• Correspondingly, we add a new ‘flavor’ of Modus Ponens to the
syntactic (and interface) schemata (⊸a-Elimination).

• This is used to analyze intonationally realized phrasal affixes, Japanese
and Korean case markers, Chinese sentence particles, English pos-

sessive -’s, etc.

• Lexical entry for English semantic focus:

⊢ foc, foc’ : A ⊸a A, B → Bt
t

40

(42) Kim thinks Sandy makes the most

a. First reading: Sandy makes the most, Kim thinks.

b. Second reading: The amount Kim thinks Sandy makes exceeds

the amount Kim thinks anyone else makes.

c. Third reading: The amount Kim thinks Sandy makes exceeds the

amount anyone else thinks Sandy makes.

(43) Intuitive Explanation

• The FE the most and the FI have adjacent scope (‘parasitic scope’
or ‘tucking in’).

• If Kim is focused, then they have to scope at the root clause
(because operators can raise but not lower).

• If Sandy is focused, then there is ambiguity as to whether it

scopes in the root clause or the complement clause.

41

(44) Toward an Analysis of Superlatives

a. Fido cost the most.

b. We take this to mean that Fido is the unique maximizer of the
function that maps (relevant) entities to their prices.

c. We assume something’s price is the maximum amount that it costs.

d. So our target semantics for this sentence is

um(Fido’)x.maxd.cost’(d)(x)

where the operizer um is subject to the meaning postulate

e. ⊢ um = λx.λf .∀y((y 6= x)→ (f(x) > f(y))) : e→ et
d

f. After normalization, (d) translates to:

∀y((y 6= Fido’)→ [max(λd.cost’(d)(Fido’)) > max(λd.cost’(d)(x))])

g. This is the semantics our theory will predict, as long as the se-

mantics of the most is max and focus is instantiated as um.

g. But how does focus get instantiated?

42

(45) Instantiating Focus

a. Lexical entries:

⊢ cost, cost’ : Deg ⊸c NP ⊸s S

⊢ the most, IF(um) ·max : Deg, dd
t ⊣

The semantics here means: ‘max directly outscoped by the result
of instantiating focus as um’.

b. Focus Instantiation Semantic Schema (FI)

If Γ ⊢ a ⊣ foc’(b)x; IF(c) · dy; ∆,

then Γ ⊢ a ⊣ c(b)x · dy; ∆

Note that in the corresponding interface schema, nothing happens

in the syntax.

43

(46) Analysis of a Superlative Sentence

a. Syntax:

(s (foc Fido a) (cost the most c))

b. Semantics:

um(Fido’)x.maxd.cost’(d)(x)

cost’(d)(x) ⊣ um(Fido’)x ·maxd

cost’(d)(x) ⊣ foc’(Fido’)x; IF(um) ·maxd

x ⊣ foc’(Fido’)x

foc’(Fido’)

foc’ Fido’

cost’(d) ⊣ IF(um) ·maxd

cost’ d ⊣ IF(um) ·maxd

IF(um) ·max

c. Normalized TLC translation:

∀y((y 6= Fido’)→ [max(λd.cost’(d)(Fido’)) > max(λd.cost’(d)(x))])

44

(47) The Same

a. Plural-focus the same:

Fido and Felix got the same present.

∃y(present’(y) ∧ ∀x[(x <a Fido’ + Felix’)→ get’(y)(x)])

Here + denotes Link join (plural formation), and <a denotes the
part-of relation between an atom and a plural.

b. Elliptical (associate-remnant) the same:

Fido got the same present as Felix.

∃y(present’(y) ∧ get’(y)(Fido’) ∧ get’(y)(Felix’))

c. These sentences have equivalent truth conditions.

d. Here we only analyze plural-focus the same.

e. Elliptical the same and other associate-remnant constructions are

analyzed in work in progress.

45

(48) Analysis of Plural-Focus The Same

a. We cannot escape from positing a special coordination rule with

semantics corresponding to Link join (plural formation).

b. We also need a new basic semantic type e′ for plural entities.

c. Syntactically, plural-focus the same is just a determiner.

d. But semantically, it is an FE operizer:

1. Its own semantics is the existential generalized determiner a’.

2. The FI is the distributive operizer dist that converts a plural to
a universal quantifier, characterized by the meaning postulate

⊢ dist = λx′ .λP .∀x((x <a x′)→ P (x)) : e′ → et
t

3. Unlike the most, in this case the FE outscopes the FI.

e. So the lexical entry for the same is:

⊢ the same, a’ · FI(dist) : N ⊸sp NP, et→ et
t

46

(49) Analysis of a Plural-Focus The Same Sentence

a. Syntax: (s (foc (Fido and Felix) a) (got (the same present sp) c))

b. Semantics:

a’(present’)y.dist(Fido’ + Felix)x.get’(y)(x)

get’(y)(x) ⊣ a’(present’)y · dist(Fido’ + Felix’)x

get’(y)(x) ⊣ a’(present’)y · FI(dist); foc’(Fido’ + Felix’)x

x ⊣ foc’(Fido’ + Felix’)x

foc’(Fido’ + Felix’)

foc’ (Fido’ + Felix’)

Fido’ + Felix’

get’(y) ⊣ a’(present’)y · FI(dist)

a’(present’) · FI(dist)

a’ · FI(dist) present’

c. Normalized TLC translation:

∃y(present’(y) ∧ ∀x[(x <a Fido’ + Felix’)→ get’(y)(x)])

47

(50) The EMG Story Retold

• Syntactic and semantic derivations are parallel, not cascaded.

• Derivations are proofs, not sequences of tree operations.

• All signs have a semantics (‘it’s phases all the way down’).

• Traces are ordinary logical variables, not copies of their binders.

• There is no ‘Trace Conversion’: traces are paired with seman-
tic variables from birth.

• Merge is Modus Ponens.

• ‘Overt Move’ works as Gazdar said.

• ‘Covert Move’ works as Cooper said.

• Rules can intermingle because that’s always the case in proofs.

• Interpretation of the semantic proof is simple and explicit.

• There is no ‘LF’ between syntax and semantics.

48

