
A PARALLEL-DERIVATIONAL ARCHITECTURE

FOR THE SYNTAX-SEMANTICS INTERFACE

Carl Pollard
INRIA-Lorraine and Ohio State University

ESSLLI 2008 Workshop on
What Syntax Feeds Semantics

Hamburg, August 14, 2008

1 Introduction: a Convergence of Views

(1) Back in 1970:

• Montague’s “Universal Grammar” and “English as a Formal Lan-
guage” were published, proposing that NL syntactic derivations (anal-
ysis trees) and their meanings were constructed in parallel.

In particular, there was nothing ‘between’ syntax and semantics.

• Chomsky’s “Conditions on Transformations” (published in 1973) in-
troduced the T-model, in which interpretive rules applied between
SS and LF:

Phonetics ← PF ← SS → LF → Semantics

↑
DS
↑

LEX

(2) And Now, almost Forty Years Later:

• The existence of LF is still assumed within the current avatar of
transformational grammar (TG), the Minimalist Program (MP).

• And the existence of LF is still rejected within the Montague-inspired
research traditions such as catagorial grammar (CG) and phrase struc-
ture grammar (PSG).

• Can’t we settle this?

1

(3) The Cascade

Straightening the right arm of the T and suppressing the left arm:

Semantics

↑?

LF

↑C

SS

↑O

DS

↑M

LEX

with the subscripts on the arrows distinguishing the three rule cycles
Merge, Overt Move, and Covert Move.

(4) A Convergence of Views

• The Cascade has long since been rejected—by all—because (in main-
stream parlance) the three kinds of operations have to be intermin-
gled: merges must be able to follow moves, and overt moves must be
able to follow covert ones. Therefore:

• – There is only a single cycle of operations.

– DS and SS do not exist.

– There are multiple points in a derivation where the syntax con-
nects to the interface systems.

• The Minimalist Program (MP) is one framework for filling in the
details of this consensus view.

• This talk is about a different one, worked out within the framework
of Extended Montague Grammar (EMG) about 30 years ago.

2

2 What was Extended Montague Grammar?

(5) Extended Montague Grammar (EMG)

• EMG emerged in the mid 1970s as an alternative to Chomsky’s Re-
vised Extended Standard Theory (REST).

• It was influenced by mathematical logic (especially model theory) and
computer science.

• It sought greater simplicity, precision, and tractability.

• It included practicioners of:

– PSG, e.g. Cooper, Gazdar, Pullum

– CG, e.g. Dowty

– switch hitters, e.g. Bach.

(6) Three Signal Achievments of EMG

• Cooper’s (1975) storage replaced covert movement.

• Gazdar’s (1979) linking schemata replaced overt movement.

• Bach and Partee (1980) incorporated both into a PSG-based account
of (what would later be called) binding theory facts.

(7) EMG after 1980

• EMG spawned CCG, HPSG, TLG, ACG, etc.

• In spite of the many important contributions made within these
frameworks, none of them capture the simplicity and elegance of the
intuitions behind Cooper storage and the Gazdar schemata.

• I’ll present a logical reconstruction of EMG that tries to do that.

• But why?

(8) Why Reconstruct EMG?

• EMG had already correctly perceived many of the main defects of the
T-model and had good proposals for fixing them.

• But EMG and its descendants have not presented themselves in ways
that make them seem interesting or inaccessible to noninitiates, so
they have often ended up “preaching to the choir”.

• The case for EMG needs to be made anew, in ways that address the
concerns of “mainstream generative grammarians”.

• A promising approach is to reformulate the EMG ideas using an es-
pecially transparent formalism: Gentzen natural deduction with
Curry-Howard proof terms.

3

3 A Logical Reconstruction of EMG

3.1 Background: Natural Deduction

(9) ND Introduction

• We review a style of ND called Gentzen ND with Curry-Howard
proof terms, hereafter simply ND.

• We illustrate how ND works by giving a proof theory for a simple
kind of propositional logic, the (intuitionistic) logic of implication.

• Later, we’ll use ND for semantic and syntactic derivations.

(10) Intuitionistic Implicative Logic (IIL)

• We start with some atomic formulas X, Y, Z, . . ., and form more
formulas from them using the implication connective →.

• Notation: A, B, and C range over IIL formulas; and A → (B → C)
is abbreviated as A→ B → C.

• Question: Which formulas should be considered theorems?

• There are many kinds of proof systems for IIL, but they all agree
on what the theorems should be.

• For example, these are theorems:

A→ A, A→ (A→ B)→ B, (A→ B)→ (B → C)→ (A→ C)

• But these are not:

A, A→ B, A→ A→ B, ((A→ B)→ A)→ A.

(11) Curry-Howard Correspondence (1/2)

• Gentzen (1934) invented sequent-style ND.

• Howard (1969, published 1980), elaborating on observations of Curry
(1934, 1958), showed that terms of typed lambda calculus (TLC)
could be thought of as ND proofs.

• Subsequently this idea, called the Curry-Howard correspondence
(CH) has been extended to many different kinds of logic.

• The basic ideas of CH are that, if you let the atomic formulas be the
types of a TLC, then

1. a formula is the same thing as a type.

2. A formula A has a proof iff there is a combinator (closed
term containing no basic constants) of type A.

• Hence the Curry-Howard slogan:

formulas = types, proofs = terms

4

(12) Notation for ND Proof Theory

• An ND proof theory consists of inference rules, which have pre-
misses and a conclusion.

• An n-ary rule is one with n premisses, and a 0-ary rule is called an
axiom.

• Premisses and conclusions have the format of a judgment:

Γ ⊢ a : A

read ‘a is a proof of A with hypotheses Γ’.

• A is a formula/type, a is a term/proof, and Γ, the context of the
judgment, is a set of variable/formula pairs of the form x : A.

(13) Some Rule Schemas for IIL

Hypotheses:

x : A ⊢ x : A (x a variable of type A)

Nonlogical Axioms:

⊢ a : A (a a basic constant of type A)

Modus Ponens:

if Γ ⊢ f : A→ B and Γ′ ⊢ a : A,

then Γ, Γ′ ⊢ f(a) : B

Hypothetical Proof:

if x : A, Γ ⊢ b : B,

then Γ ⊢ λxb : A→ B

This subsystem of IIL, called linear IIL, is all we need for present pur-
poses. Additional (structural) rules are needed for full IIL.

(14) Curry-Howard Correspondence (2/2)

• Variables correspond to hypotheses.

• Basic constants correspond to nonlogical axioms.

• Derivability of Γ ⊢ a : A corresponds to A being provable from the
hypotheses in Γ.

• Application corresponds to Modus Ponens.

• Abstraction corresponds to Hypothetical Proof.

5

(15) Reformulating EMG using ND

• We have two logics, each with its own ND proof theory.

• The syntax-semantics interface recursively defines the the set of
syntax/semantics proof-pairs that belong to the NL in question.

• We call those pairs the signs of the NL.

• The signs are the inputs to the interpretive interfaces:

– the syntactic component is phonetically interpreted, and

– the semantic component is semantically interpreted.

• We call this style of grammar Convergent Grammar (CVG).

(16) Parallel-Derivational (PD) Artchitecture

phonetics

↑

Syn
Syn candidates → + ← Sem candidates

Sem

↓

semantics

3.2 Syntax

(17) ND-Style Syntax

• The inference rules are the syntax rules.

• The formulas/types are the syntactic categories.

• The proofs/terms are the syntactic expressions.

• The basic constants are the syntactic words;

• The variables are traces.

• The context of a judgment is the list of unbound traces.

(18) Categories

• Basic categories, such as S, NP, and N.

For present purposes we ignore morphosyntactic details such as case,
agreement, and verb inflection.

• Function categories: if A and B are categories, so is A ⊸f B, for
f ∈ F, the set of grammatical function names (gramfuns).

A is called the argument type and B the result type.

6

• Operator categories: if A, B, and C are categories, so is G[A, B, C],
abbreviated AC

B.

A, B, and C are called the binding category, the scope category B,
and the result category C respectively.

The G constructor is inspired by Moortgat’s (1991) q-constructor,
but that was for covert (not overt) movement. A standard TLG way
to get the effect of AC

B is C/(B↑A) where ↑ is Moortgat’s (1988)
extraction constructor.

(19) Some Syntactic Words

⊢ Chris : NP

⊢ everyone : NP

⊢ whoin-situ : NP

⊢ whatin-situ : NP

⊢ whofiller : NPQ
S

⊢ whatfiller : NPQ

S

⊢ liked : NP ⊸c NP ⊸s S

⊢ thought : S ⊸c NP ⊸s S

⊢ wondered : Q ⊸c NP ⊸s S

⊢ whether : S ⊸c Q

(20) Remarks on the Lexicon

• QNPs are just NPs.

• Wh-expressions are ambiguous between NPs and operators.

(21) The Syntactic Schemata

Schema Mc (Complement Modus Ponens)

If Γ ⊢ f : A ⊸c B and Γ′ ⊢ a : A,
then Γ; Γ′ ⊢ (f a c) : B

Schema Ms (Subject Modus Ponens)

If Γ ⊢ a : A and Γ′ ⊢ f : A ⊸s B,
then Γ; Γ′ ⊢ (s a f) : B

Schema T (Trace)

t : A ⊢ t : A (t fresh)

Schema G (Gazdar Schema)

If Γ ⊢ a : AC
B and t : B; Γ′ ⊢ b : B,

then Γ; Γ′ ⊢ atb : C (t not free in a)

7

(22) Remarks on the Syntactic Schemata

• The Modus Ponens schemata correspond to Merge.

• Traces are just variables (no internal structure).

• The Gazdar Schema corresponds to Overt Move.

It is an ND reformulation of Gazdar’s (1979) linking schemata,

• a was not moved or copied from the position of the trace t.

• So there is no issue about which end of the ‘chain’ is pronounced.

• Merges can follow Moves because in ND you can always apply any
rule as long as its premisses have been proved.

(23) A Simple Sentence

⊢ (s Chris (thought (s Kim (liked Dana c) c))) : S

(24) An Embedded Constituent Question

⊢ [whatfiller t(
s Kim (likes t c))] : Q

Here what is an operator of type NPQ

S : it combines with an S containing
an unbound NP trace to form a Q, while binding the trace.

(25) A Binary Constituent Question

⊢ [whofiller t(
s t (likes whatin-situ

c))] : S

Here who is an operator but what is just an NP.

(26) A Baker Question

⊢ [whofiller t(
s t (wonders [whofiller t′(

s t′ (likes whatin-situ
c))] c))] : S

Here, both who are operators but what is just an NP.

For the semantics of these examples, see my paper from the Workshop on
Symmetric Calculi and Ludics.

8

3.3 Semantics

(27) ND-Style Semantics

• The semantic logic is broadly similar to TLC.

• The formulas/types are the semantic types.

• The semantic term of a sign gets semantically interpreted.

• Thus it is the closest CVG counterpart of an ‘LF’. But:

– The semantic terms are in no way derived from syntax, and

– there is an explicit translation into TLC, hence no indeterminacy
about their interpretation.

• As in Montague semantics, basic constants denote word meanings.

• As we’ll see, the syntax-semantics interface ensures that free semantic
variables are always paired with either (1) unbound traces, or (2)
Cooper-stored semantic operators.

(28) Format for Judgments in Semantic Rules

Γ ⊢ a : A ⊣ ∆

a. ‘term a is assigned type A in context Γ and co-context ∆.’

b. The context lists the unbound traces.

c. The co-context (Cooper storage, ND style) stores quantifiers, indef-
inites, pronouns, reflexives, wh-in situ, comparative and superlative
operators, subdeletion gaps, topic, focus, and more.

d. Each operator is stored together with the variable it will bind.

d. The co-context is a set, not a list (assuming covert movement is not
subject to the Nested Dependency Constraint).

e. We often omit the ‘⊣’ if the co-context is empty.

(29) Semantic Types

a. Basic types: for present purposes, e, t, and d (degrees).

b. Function types: If A and B are types, then so is A→ B.

c. Operator types: If A, B, and C are types, so is G[A, B, C], abbre-
viated AC

B.

d. So the semantic type system is just like the syntactic category system,
except

i. different basic types; and

ii. only one kind of implication (→).

9

(30) How the Semantic Operator Types are Used

• Semantic operator types are used for expressions which would be
analyzed in TG as undergoing (overt or covert) Ā-movement.

• ‘Covertly moved’ signs: the syntax is not an operator, but the seman-
tics (which gets Cooper-stored) is.

Example: A QNP has category NP, but its semantic type is et
t.

• ’Overtly moved’ signs: syntax and semantics are both operators.

Example: ‘Overtly moved’ who has category NPQ
S and semantic type

ee→π→t
π (where π =def s→ t).

(31) The Semantic Schemata

Constants, variables, and Modus Ponens just as in TLC, plus:

Semantic Schema C (Cooper Storage)

If Γ ⊢ a : AC
B ⊣ ∆, then Γ ⊢ x : A ⊣ ax : AC

B; ∆ (x fresh)

Schema R (Retrieval)

If Γ ⊢ b[x] : B ⊣ ax : AC
B; ∆, then Γ ⊢ (axb[x]) : C ⊣ ∆,

(x free in b but not in ∆)

Schema G (Semantic Counterpart of Gazdar Schema)

If Γ ⊢ a : AC
B ⊣ ∆ and x : A, Γ′ ⊢ b : B ⊣ ∆′

then Γ; Γ′ ⊢ (axb) : C ⊣ ∆, ∆′ (x not free in a)

Note: Underscoring x in Schema R is part of the term! Otherwise you
can’t tell whether x was bound by Schema R or Schema G.

(32) The Transform τ from Semantic Terms to TLC
Everything stays the same except:

a. τ(AC
B) = (τ(A)→ τ(B))→ τ(C)

b. τ((f a)) = τ(f)(τ(a))

The change in the parenthesization has no theoretical significance. It
just enables one to tell at a glance whether the term belongs to the
CVG semantic calculus or to TLC, e.g. (walk’ Kim’) vs. walk’(Kim’).

c. τ((axb)) = τ(a)(λxτ(b))

Operator binding translates into abstraction immediately followed by
application.

This should be compared with the apparent inexplicitness about the in-
terpretation of LF.

10

4 The Syntax-Semantics Interface

(33) Some Lexical Entries

⊢ Chris, Chris’ : NP, e

⊢ everyone, everyone’ : NP, et
t ⊣

⊢ someone, someone’ : NP, et
t

⊢ liked, like’ : NP ⊸c NP ⊸s S, e→ e→ t

⊢ thought, think’ : S ⊸c NP ⊸s S, π → e→ t

(34) Schema Ms (Subject Modus Ponens)

If Γ ⊢ a, c : A, C ⊣ ∆ and Γ′ ⊢ f, v : A ⊸s B, C → D ⊣ ∆′,
then Γ; Γ′ ⊢ (s a f), (v c) : B, D ⊣ ∆; ∆′

Heads combine with subjects semantically by function application.

Contexts (unbounded traces) and co-contexts (Cooper-stored operators)
get passed up (as in old-fashioned PSG).

(35) Schema Mc (Complement Modus Ponens)

If Γ ⊢ f, v : A ⊸c B, C → D ⊣ ∆ and Γ′ ⊢ a, c : A, C ⊣ ∆′,
then Γ; Γ′ ⊢ (f a c), (v c) : B, D ⊣ ∆; ∆′

Just like the preceding but for complements instead of subjects.

(36) Schema T (Trace)

t, x : A, B ⊢ t, x : A, B ⊣ (t and x fresh)

Traces are paired with semantic variables at birth.

Compare with the MP, where traces must undergo a multistage process of
‘trace conversion’, whose details are not agreed upon, in order to become
semantically interpretable.

(37) Schema C (Cooper Storage)

If Γ ⊢ a, b : A, BD
C ⊣ ∆, then Γ ⊢ a, x : A, B ⊣ bx : BD

c ; ∆ (x fresh)

When a semantic operator is stored, nothing happens in the syntax.

(38) Schema R (Retrieval)

If Γ ⊢ e, c[x] : E, C ⊣ bx : BD
C ; ∆ then Γ ⊢ e, (bxc[x]) : E, D ⊣ ∆

(x free in c but not in ∆)

When a semantic operator is retrieved, nothing happens in the syntax.

11

(39) Schema G (Gazdar Schema)

If Γ ⊢ a, d : AC
B, DF

E ⊣ ∆ and t, x : B, D; Γ′ ⊢ b, e : B, E ⊣ ∆′,
then Γ; Γ′ ⊢ (atb), (dxe) : C, F ⊣ ∆, ∆′ (t free in b, x free in e)

The syntactic and semantic operators scope in parallel.

Important: The operator a binds the trace t, but does not ‘move’ from
the argument position t occupies, or ‘copy’ t.

This is just as in TLC, where there is no sense in which λx.bite’(x)(Fido’)
is derived by movement or copying from bite’(λ)(Fido’).

5 Quantifier Scope

(40) Cooper Storage (‘Covert Movement’) Example

S

NP

Ira

NP ⊸s S

NP ⊸c NP ⊸s S

caught

NP

N ⊸sp NP

a

N

chipmunk

a’(chipmunk’)x(catch’(x)(Ira’))

catch’(x)(Ira’) ⊣ a’(chipmunk’)x

Ira’ catch’(x) ⊣ a’(chipmunk’)x

catch’ x ⊣ a’(chipmunk’)x

a’(chipmunk’)

a’ chipmunk’

At the storage and retrieval nodes, nothing happens in the syntax.

(41) Quantifier Scope Ambiguity

a. Syntax (both readings):

(s Chris (thinks (s Kim (likes everyone c) c))) : S

b. Semantics (scoped to lower clause):

((think’ (everyone’x((like’ x) Kim’))) Chris’)

TLC: think’(λw(∀x(person′(x)(w)→ like’(x)(Kim’)(w))))(Chris’)

c. Semantics (scoped to upper clause):

(everyone’x((think’ ((like’ x) Kim’)) Chris’))

TLC: λw(∀x(person’(x)(w)→ think’(like’(x)(Kim’))(Chris’)(w)))

12

(42) Raising of Two Quantifiers to Same Clause

a. Syntax (both readings): (s everyone (likes someone c)) : S

b. ∀∃-reading: (everyone’x(someone’y((like’ y) x)))

c. ∃∀-reading: (someone’y(everyone’x((like’ y) x)))

6 Parasitic Scope

(43) Parasitic Scope

• Barker (in press) introduces this term to describe quantifiers such
as the same and different whose ‘scope target does not exist until
[another quantifier] takes its scope’.

• Other instances of this phenomenon include superlatives and ellip-
tical constructions such as phrasal comparatives.

• Barker’s analysis uses continuations and choice functions.

• We propose an account based on a notion of focus exploitation.

(44) Operizers

• Recall that an operator is a (syntactic or semantic) term whose type
is of the form AC

B.

• We define an operizer to be a functional term whose result type is
an operator type.

• An operator can be thought of as a 0-ary operizer.

• Intuitively, an operizer is a ‘movement trigger’: it converts its argu-
ment into something that ‘has to move’ to take scope.

(45) Some Signs with Operizer Semantics

• ordinary determiners: type (e→ t)→ et
t

• ‘overtly moved’ interrogative determiner which: type (e → t) →
ee→π→t
π (where π =def s→ t).

• (non-phrasal) comparative -er, assuming the than-phrase complement
denotes a degree: type d→ dt

d.

• Following (in spirit) Moortgat 1991, we can analyze pragmatic fo-
cus as an intonationally realized phrasal affix whose semantics has
the (polymorphic) operizer type B → Bt

t .

13

(46) Semantic Focus as an Operizer ‘Wild Card’

• We suggest treating semantic focus as an operizer ‘wild card’ whose
instantiation depends on what other sign is exploiting it.

• Best-known is the case of ‘particles’ (only, even, too) where the focus
instantiator (FI) is just the semantics of the particle itself.

• Here we consider more complex cases of parasitic scope, where the
focus exploiter (FE) ‘contributes’ two operizers: one its own seman-
tics and the other the FI; the focused phrase is called the asscociate.

• In still more complex—elliptical—cases to be treated elsewhere, the
FI takes two arguments: the associate and the FE’s (extraposed)
complement, called the remnant.

(47) A New Grammatical Function for Phrasal Affixation

• We add to the inventory of gramfuns the name affix (abbr. a),
mnemonic for ‘(phrasal) affixation’.

• Correspondingly, we add a new ‘flavor’ of Modus Ponens to the syn-
tactic (and interface) schemata (⊸a-Elimination).

• This is used to analyze intonationally realized phrasal affixes, Japanese
and Korean case markers, Chinese sentence particles, English posses-
sive -’s, etc.

• Lexical entry for English semantic focus:

⊢ foc, foc’ : A ⊸a A, B → Bt
t

(48) An (at Least) Triply Ambiguous Superlative Sentence

a. Kim thinks Sandy makes the most.

b. First reading: Sandy makes the most, Kim thinks.

c. Second reading: The amount Kim thinks Sandy makes exceeds the
amount Kim thinks anyone else makes.

d. Third reading: The amount Kim thinks Sandy makes exceeds the
amount anyone else thinks Sandy makes.

(49) Comments on the Preceding

• These are all internal readings. Examples of this kind seem to lack
decitic/external readings.

• We can force the third reading by placing the focal pitch accent on
Kim.

• We can rule out the third reading by placing the focal pitch accent
on Sandy.

14

(50) Intuitive Explanation

• The FE the most and the FI have adjacent scope (‘parasitic scope’ or
‘tucking in’).

• If Kim is focused, then they have to scope at the root clause (because
operators can raise but not lower).

• If Sandy is focused, then there is ambiguity as to whether it scopes
in the root clause or the complement clause.

(51) Toward an Analysis of Superlatives

a. Fido cost the most.

b. We take this to mean that Fido is the unique maximizer of the func-
tion that maps (relevant) entities to their prices.

c. We assume something’s price is the maximum amount that it costs.

d. So our target semantics for this sentence is

um(Fido’)x.maxd.cost’(d)(x)

where the operizer um is subject to the meaning postulate

e. ⊢ um = λx.λf .∀y((y 6= x)→ (f(x) > f(y))) : e→ et
d

f. After normalization, (d) translates to:

∀y((y 6= Fido’)→ [max(λd.cost’(d)(Fido’)) > max(λd.cost’(d)(x))])

g. This is the semantics our theory will predict, as long as the semantics
of the most is max and focus is instantiated as um.

g. But how?

(52) Instantiating Focus

a. Lexical entries:

⊢ cost, cost’ : Deg ⊸c NP ⊸s S

⊢ the most, IF(um) ·max : Deg, dd
t ⊣

The semantics here means: ‘max directly outscoped by the result of
instantiating focus as um’.

b. Focus Instantiation Semantic Schema (FI)

If Γ ⊢ a ⊣ foc’(b)x; IF(c) · dy; ∆,

then Γ ⊢ a ⊣ c(b)x · dy; ∆

Note that in the corresponding interface schema, nothing happens in
the syntax.

15

(53) Analysis of a Superlative Sentence

a. Syntax:

(s (foc Fido a) (cost the most c))

b. Semantics:

um(Fido’)x.maxd.cost’(d)(x)

cost’(d)(x) ⊣ um(Fido’)x ·maxd

cost’(d)(x) ⊣ foc’(Fido’)x; IF(um) ·maxd

x ⊣ foc’(Fido’)x

foc’(Fido’)

foc’ Fido’

cost’(d) ⊣ IF(um) ·maxd

cost’ d ⊣ IF(um) ·maxd

IF(um) ·max

c. Normalized TLC translation:

∀y((y 6= Fido’)→ [max(λd.cost’(d)(Fido’)) > max(λd.cost’(d)(x))])

(54) The Same

a. Plural-focus the same:

Fido and Felix got the same present.

∃y(present’(y) ∧ ∀x[(x <a Fido’ + Felix’)→ get’(y)(x)])

Here + denotes Link join (plural formation), and <a denotes the
part-of relation between an atom and a plural.

b. Elliptical (associate-remnant) the same:

Fido got the same present as Felix.

∃y(present’(y) ∧ get’(y)(Fido’) ∧ get’(y)(Felix’))

c. These sentences have equivalent truth conditions.

d. Here we only analyze plural-focus the same.

e. Elliptical the same and other associate-remnant constructions are an-
alyzed in work in progress.

16

(55) Analysis of Plural-Focus The Same

a. We cannot escape from positing a special coordination rule with se-
mantics corresponding to Link join (plural formation).

b. We also need a new basic semantic type e′ for plural entities.

c. Syntactically, plural-focus the same is just a determiner.

d. But semantically, it is an FE operizer:

1. Its own semantics is the existential generalized determiner a’.

2. The FI is the distributive operizer dist that converts a plural to
a universal quantifier, characterized by the meaning postulate

⊢ dist = λx′.λP .∀x((x <a x′)→ P (x)) : e′ → et
t

3. Unlike the most, in this case the FE outscopes the FI.

e. So the lexical entry for the same is:

⊢ the same, a’ · FI(dist) : N ⊸sp NP, et→ et
t

(56) Analysis of a Plural-Focus The Same Sentence

a. Syntax: (s (foc (Fido and Felix) a) (got (the same present sp) c))

b. Semantics:

a’(present’)y.dist(Fido’ + Felix)x.get’(y)(x)

get’(y)(x) ⊣ a’(present’)y · dist(Fido’ + Felix’)x

get’(y)(x) ⊣ a’(present’)y · FI(dist); foc’(Fido’ + Felix’)x

x ⊣ foc’(Fido’ + Felix’)x

foc’(Fido’ + Felix’)

foc’ (Fido’ + Felix’)

Fido’ + Felix’

get’(y) ⊣ a’(present’)y · FI(dist)

a’(present’) · FI(dist)

a’ · FI(dist) present’

c. Normalized TLC translation:

∃y(present’(y) ∧ ∀x[(x <a Fido’ + Felix’)→ get’(y)(x)])

17

7 Conclusions

(57) Summing Up

• EMG had a good theory of how to repair the T-model.

• But so far the story has not been told in a way that has gained it
mainstream acceptance.

• Howard (1980) provided the technology to retell the EMG story sim-
ply and clearly.

(58) The EMG Story Retold

• Syntactic and semantic derivations are parallel, not cascaded.

• Derivations are proofs, not sequences of tree operations.

• All signs have a semantics (‘it’s phases all the way down’).

• Traces are ordinary logical variables, not copies of their binders.

• There is no ‘Trace Conversion’: traces are paired with semantic
variables from birth.

• Merge is Modus Ponens.

• ‘Overt Move’ works as Gazdar said.

• ‘Covert Move’ works as Cooper said.

• Rules can intermingle because that’s always the case in proofs.

• Interpretation of the semantic proof is simple and explicit.

• There is no ‘LF’ between syntax and semantics.

18

