Presupposition in DRT

Slides by Patrick Blackburn & Johan Bos (malaga4.ppt) and slightly modified by Maribel Romero (MR)

Ling391: Advanced Computational Semantics
PRESUPPOSITION
Presupposition

- Presupposition vs. Entailment
- Look at some examples of presupposition
- Look at the typical problems associated with presuppositions
- Concentrate on a DRT based approach due to Rob van der Sandt
What is presupposition?

- It is hard to pin down precisely what presuppositions are or how they behave.
- Presuppositions are a bit like entailment but not quite...
Entailment

Consider:

- Vincent has a car.
- A car is a vehicle.

This entails:

- Vincent has a vehicle.
Entailment

- Consider:

 Vincent has a red car.

- This entails:

 Vincent has a car.
Entailment and negation

- Entailments are typically not preserved under negation.
Entailment

- Consider:

 Vincent has no car.
 A car is a vehicle.

- This does not entail:

 Vincent has a vehicle.
Entailment

Consider:

Vincent does not have a red car.

This does not entail:

Vincent has a car.
Presupposition

Consider:

Vincent cleaned his car.

This entails:

Vincent has a car.
Consider:

Vincent did not clean his car.

This entails:

Vincent has a car.
Entailment or presupposition

- We call implications preserved under negation presuppositions.
- We call implications not preserved under negation entailments.
Presupposition triggers

- In English, presuppositions are usually triggered by lexical items.
- There are several tricks to find out whether a lexical item is a presupposition trigger or not.
- These tests are:
 - The negation test
 - The conditional test
 - The question test
Presupposition trigger test

- Consider the sentence:

 Alex is a bachelor.

- This sentence implies that Alex is male.
- But are we dealing with a presupposition or entailment?
Presupposition test

- Alex is a bachelor.
 Does this presuppose: Alex is male?
Presupposition test

- Alex is a bachelor.
 Does this presuppose: Alex is male?

- Negation: Alex is not a bachelor.
 Implies: Alex is male? YES
Presupposition test

- Alex is a bachelor.
 Does this presuppose: Alex is male?

- Negation: Alex is not a bachelor.
 Implies: Alex is male? YES

- Conditional: If Alex is a bachelor, then ...
 Implies: Alex is male? YES
Presupposition test

- Alex is a bachelor.

 Does this presuppose: Alex is male?

- Negation: Alex is not a bachelor.

 Implies: Alex is male? YES

- Conditional: If Alex is a bachelor, then ...

 Implies: Alex is male? YES

- Question: Is Alex is a bachelor?

 Implies: Alex is male? YES
Presupposition test

- Alex is a bachelor.
 Does this presuppose: Alex is male?

- Negation: Alex is not a bachelor.
 Implies: Alex is male? YES

- Conditional: If Alex is a bachelor, then ...
 Implies: Alex is male? YES

- Question: Is Alex is a bachelor?
 Implies: Alex is male? YES

- Conclusion:
 being a bachelor presupposes being male.
Presupposition trigger test

- Consider the sentence:
 Alex is a man.

- This sentence implies that Alex is male.
- But are we dealing with a presupposition or entailment?
Presupposition test

- Alex is a man.
 Does this presuppose: Alex is male?
Presupposition test

- Alex is a man.
 Does this presuppose: Alex is male?

- Negation: Alex is not a man.
 Implies: Alex is male? NO
Presupposition test

- Alex is a man.
 Does this presuppose: Alex is male?

- Negation: Alex is not a man.
 Implies: Alex is male? NO

- Conditional: If Alex is a man, then ...
 Implies: Alex is male? NO
Presupposition test

- Alex is a man.
 Does this presuppose: Alex is male?

- Negation: Alex is not a man.
 Implies: Alex is male? NO

- Conditional: If Alex is a man, then ...
 Implies: Alex is male? NO

- Question: Is Alex is a man?
 Implies: Alex is male? NO
Presupposition test

- Alex is a man.
 Does this presuppose: Alex is male?

- Negation: Alex is not a man.
 \textit{Implies}: Alex is male? NO

- Conditional: If Alex is a man, then ...
 \textit{Implies}: Alex is male? NO

- Question: Is Alex is a man?
 \textit{Implies}: Alex is male? NO

- Conclusion:
 being a man does not presuppose being male.
Presupposition trigger test

- Consider the sentence:
 Butch knows that Zed is dead.

- This sentence implies Zed is dead.
- But are we dealing with a presupposition or entailment?
Presupposition test

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?
Presupposition test

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?

- Negation: Butch does not know that Zed is dead.
 Implies: Zed is dead? YES
Presupposition test

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?

- Negation: Butch does not know that Zed is dead.
 Implies: Zed is dead? YES

- Conditional: If Butch knows that Zed is dead, then ...
 Implies: Zed is dead? YES
Presupposition test

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?

- Negation: Butch does not know that Zed is dead.
 Implies: Zed is dead? YES

- Conditional: If Butch knows that Zed is dead, then ...
 Implies: Zed is dead? YES

- Question: Does Butch know that Zed is dead?
 Implies: Zed is dead? YES
Presupposition test

- Butch knows that Zed is dead.
 Does this presuppose: Zed is dead?

- Negation: Butch does not know that Zed is dead.
 Implies: Zed is dead? YES

- Conditional: If Butch knows that Zed is dead, then ...
 Implies: Zed is dead? YES

- Question: Does Butch know that Zed is dead?
 Implies: Zed is dead? YES

- Conclusion:
 knowing P presupposes P.
Presupposition triggers

- Presupposition triggers are not rare
- English comes with a large variety of presupposition triggers
Possessives

- Example:
 - Mia likes her husband.
 - Mia does not like her husband.

- Presupposition:
 - Mia has a husband.
To regret

- **Example:**

 Vincent **regrets** that he left Mia alone.
 Vincent does not **regret** that he left Mia alone.

- **Presupposition:**

 Vincent left Mia alone.
To like

- Example:
 Mia likes Vincent.
 Mia does not like Vincent.

- Presupposition:
 Mia knows Vincent.
Example:

Butch answered the phone.
Butch did not answer the phone.

Presupposition:

The phone was ringing.
Example:

Only Jules likes big kahuna burgers.
Not only Jules likes big kahuna burgers.

Presupposition:

Jules likes big kahuna burgers.
Example:

Butch escaped again.
Butch did not escape again.

Presupposition:
Butch escaped once before.
To manage

- Example:
 - Butch **manage** to start the chopper.
 - Butch did not **manage** to start the chopper.

- Presupposition:
 - Butch had difficulties starting the chopper.
Third

Example:

Butch lost for the third time.
Butch did not loose for the third time.

Presupposition:

Butch lost twice before.
Example:

Butch continued his race.
Butch did not continue his race.

Presupposition:

Butch interrupted his race.
To win

Example:

Germany won the world cup.
Germany did not win the world cup.

Presupposition:

Germany participated in the world cup.
Example:

Peter wants another beer.
Peter does not want another beer.

Presupposition:

Peter had at least one beer.
To lie

Example:

Butch lied to Marsellus.
Butch did not lie to Marsellus.

Presupposition:

Butch told something to Marsellus.
Cleft construction

- Example:
 - It was Butch who killed Vincent.
 - It was not Butch who killed Vincent.

- Presupposition:
 - Someone killed Vincent.
Proper names

Example:

Butch talked to Marsellus.
Butch did not talk to Marsellus.

Presupposition:

There is someone named Marsellus.
Definite NP

Example:

Butch talked to the boss.
Butch did not talk to the boss.

Presupposition:

There is a boss.
Dealing with Presupposition

- OK, so presuppositions are fairly common. But what's the big deal?
- Problems related to presupposition:
 - The Binding Problem
 - The Denial Problem
 - The Projection Problem
- Presupposition may convey new information
 - Accommodation
The Binding Problem

Example:

Butch nearly escaped from his apartment.

Trigger “his apartment” presupposes that Butch has an apartment.
The Binding Problem

- Example:

 A boxer nearly escaped from his apartment.

- Trigger “his apartment” presupposes that a boxer has an apartment.
- But which boxer? A boxer? Any boxer?
The Denial Problem

- Vincent does not like his wife.
The Denial Problem

- Vincent does not like his wife.
- Vincent does not like his wife, because Vincent does not have a wife!
The Denial Problem

- Vincent does not regret killing Zed, because he did not kill Zed!
The Denial Problem

- Vincent does not regret killing Zed, because he did not kill Zed!

- Alex is not a bachelor, because she is a woman!
The Denial Problem

- Vincent does not regret killing Zed, because he did not kill Zed!

- Alex is not a bachelor, because she is a woman!

- Butch did not lie to Marsellus, because he did not tell him anything!
The Projection Problem

- Consider:

 Mia’s husband is out of town.

- Presupposes that Mia is married.
The Projection Problem

- Consider:

 If Mia has a husband, then Mia’s husband is out of town.

- Does NOT presuppose that Mia is married.
The Projection Problem

- Consider:

 If Mia is married, then Mia’s husband is out of town.

- Does NOT presuppose that Mia is married.
The Projection Problem

- Consider:

 If Mia dates Vincent, then Mia’s husband is out of town.

- Does presuppose that Mia is married.
The Projection Problem

- Consider:

 John’s donkey is eating quietly in the stable.

- Presupposes that John has a donkey.
The Projection Problem

- Consider:

Either John has no donkey or John’s donkey is eating quietly in the stable.

- Does NOT presuppose that John has a donkey.
The Projection Problem

Consider:

Either John is not a donkey-owner or John’s donkey is eating quietly in the stable.

Does NOT presuppose that John has a donkey.
The Projection Problem

- Consider:

 Either John is out of hay or John’s donkey is eating quietly in the stable.

- Does presuppose that John has a donkey.
The Projection Problem

- Complex sentences sometimes neutralise presuppositions
- `Complex` meaning here sentences with conditionals, negation, or disjunction, modals
- These sentences make it difficult to predict whether a presupposition projects or not
Accommodation

- Example:

 Vincent informed his boss.

- Presupposition: **Vincent has a boss.**

- What if we don’t have a clue whether Vincent has a boss or not?

- Accommodation: incorporating missed information as long as this is not conflicting with other information
There is a rich literature on presupposition

There are many different attempts to solve the problems related to presupposition

- Many-valued logics
- Default logics
- Pragmatic theories
- Non-monotonic reasoning
Van der Sandt’s Theory

- Presuppositions are essentially extremely rich anaphoric pronouns
- Presuppositions introduce new DRSs that need to be incorporated in the discourse context
- It is a good way of dealing with the binding, projection, and denial problems
Van der Sandt’s Theory

- Presuppositions introduce new DRSs that need to be incorporated in the discourse context.
- There are two ways to resolve presuppositional DRSs:
 - By binding
 - By accommodation
Two birds with one stone

- The presupposition as anaphora theory handles anaphoric pronouns and presuppositions in essentially the same way.

\[
\text{Presupposition} = \text{Anaphora} \\
\text{Anaphora} = \text{Presupposition}
\]
Two birds with one stone

Idea: In the same way that we find antecedents to bind pronouns and anaphora (1), we find antecedents to “bind” presuppositions (2):

(1) If a farmer owns a donkey, he beats it.
(2) If Mia has a husband, then Mia’s husband is out of town.

Note that the antecedents of anaphora and presupposition need not be individuals, but can be VP-properties, propositions, etc.

(3) Sue likes movies, and so does Joan.
(4) Ana stopped smoking.
One mechanism

- Essentially one mechanism to deal with pronouns, proper names, definite descriptions, etc.
- The differences are accounted for in the way they can accommodate and bind
 - Pronouns do not accommodate
 - Proper names always accommodate globally
 - Definite descriptions can accommodate anywhere
Presuppositions in DRT

- We need to carry out two tasks:
 - Select presupposition triggers in the lexicon
 - Indicate what they presuppose
- We will use a new operator, the alpha-operator, α

- If B_1 and B_2 are DRSs, the so is $B_1 \alpha B_2$
- B_1 is the presupposition of B_2
Preliminary DRSs

- **She dances**
 - She: \(x\)
 - Female: \(\text{female}(x)\)
 - Dance: \(\text{dance}(x)\)

- **Mia dances**
 - Mia: \(\text{mia}(x)\)
 - Dance: \(\text{dance}(x)\)

- **The woman dances**
 - Woman: \(\text{woman}(x)\)
 - Dance: \(\text{dance}(x)\)
Presupposition in the lexicon

- **She**
 \[\lambda p. \frac{x}{\text{female}(x)} \alpha \ p@x \]

- **Mia**
 \[\lambda p. \frac{x}{\text{mia}(x)} \alpha \ p@x \]

- **The woman**
 \[\lambda p. \frac{x}{\text{woman}(x)} \alpha \ p@x \]
Indefinite vs. Definite NP

- A woman

\[\lambda p. \quad \begin{array}{l}
 x \\
 \text{woman}(x)
\end{array} ; \quad p@x \]

- The woman

\[\lambda p. \quad \begin{array}{c}
 x \\
 \text{woman}(x)
\end{array} \quad \alpha \quad p@x \]
The algorithm

- After constructing a preliminary DRS for an input sentences, we still have to resolve the presuppositions.
- After resolution we will have an ordinary DRS that we can use for our inference tasks.
- Resulting DRS needs to be consistent and informative.
Binding Presuppositions

- **Example:**

 Vincent danced with a woman.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>vincent(x)</td>
<td>dance(e)</td>
<td>agent(e,x)</td>
</tr>
<tr>
<td>with(e,y)</td>
<td>woman(y)</td>
<td></td>
</tr>
</tbody>
</table>
Example:

Vincent danced with a woman.
The woman collapsed.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>e</td>
<td>z</td>
</tr>
<tr>
<td>vincent(x)</td>
<td>dance(e)</td>
<td>woman(z)</td>
</tr>
<tr>
<td>agent(e,x)</td>
<td>woman(y)</td>
<td>collapse(z)</td>
</tr>
</tbody>
</table>
Example:

Vincent danced with a woman.
The woman collapsed.
Binding Presuppositions

Example:
Vincent danced with a woman.
The woman collapsed.

<table>
<thead>
<tr>
<th>x y e</th>
</tr>
</thead>
<tbody>
<tr>
<td>vincent(x)</td>
</tr>
<tr>
<td>dance(e)</td>
</tr>
<tr>
<td>agent(e,x)</td>
</tr>
<tr>
<td>with(e,y)</td>
</tr>
<tr>
<td>woman(y)</td>
</tr>
</tbody>
</table>

\[
\left(\begin{array}{c}
\alpha \\
\text{woman(z)} \\
\text{z=y}
\end{array} \right)
\]

\[
\left(\begin{array}{c}
\text{collapse(z)}
\end{array} \right)
\]

pick antecedent
Example:
Vincent danced with a woman. The woman collapsed.

\[
\begin{array}{cccc}
x & y & e & z \\
\text{vincent(x)} & & & \\
\text{dance(e)} & & & \\
\text{agent(e,x)} & & & \\
\text{with(e,y)} & & & \\
\text{woman(y)} & & & \\
\text{woman(z)} & & & \\
z = y & & & \\
\end{array}
\]

\[
\begin{align*}
& \text{move} \\
& \text{collapse(z)}
\end{align*}
\]
Binding Presuppositions

Example:

Vincent danced with a woman.
The woman collapsed.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>e</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>vincent(x)</td>
<td>dance(e)</td>
<td>agent(e,x)</td>
<td>with(e,y)</td>
</tr>
<tr>
<td>woman(y)</td>
<td>woman(z)</td>
<td>z=y</td>
<td>collapse(z)</td>
</tr>
</tbody>
</table>

merge reduction
Accommodating Presuppositions

Example:
If Mia dates Vincent, then her husband is out of town

\[
\begin{array}{c|c|c}
\text{x} & \text{y} & \Rightarrow \\
\hline
\text{mia(x)} & \text{vincent(y)} & \alpha \\
\hline
\text{date(x,y)} & \text{husband(z)} & \text{out(z)} \\
\text{of(z,x)} & & \\
\end{array}
\]
Global accommodation

Example:

If Mia dates Vincent, then her husband is out of town

\[
\alpha \Rightarrow (\text{of}(z,x) \land \text{out}(z))
\]
Global Accommodation

Example:
If Mia dates Vincent, then her husband is out of town

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>mia(x)</td>
<td></td>
<td>vincent(y)</td>
<td>husband(z)</td>
</tr>
<tr>
<td>of(z,x)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{date}(x,y) \Rightarrow \text{out}(z)
\]
Non-global accommodation

- Performing global accommodation is saying that something is presupposed.
- But recall the projection problem.
- Presuppositions can be neutralised by binding and non-global accommodation.
Non-global Accommodation

Example:
If Mia is married, then her husband is out of town

<table>
<thead>
<tr>
<th>x</th>
<th>mia(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>married(x)</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha \Rightarrow (\text{married}(x) \land \text{out}(z)) \]

\[\text{of}(z,x) \]

\[\text{husband}(z) \]
Example: If Mia is married, then her husband is out of town

\[
\begin{align*}
\text{mia}(x) & \Rightarrow (\text{husband}(z) \text{ of}(z,x) \quad \alpha \\
\text{married}(x) & \quad z \\
\text{out}(z) &
\end{align*}
\]
Non-global Accommodation

Example:
If Mia is married, then her husband is out of town

\[
\begin{array}{|c|c|}
\hline
\text{married(x)} & \Rightarrow \\
\hline
\text{out(z)} & \\
\hline
\end{array}
\]
Preferences

- Binding is preferred to accommodation
- Global accommodation is preferred to local accommodation
Van der Sandt’s Algorithm

1. Generate a DRS for the input sentence, with all elementary presuppositions marked by α
2. Merge this DRS with the DRS of the discourse so far processed
3. Traverse the DRS, and on encountering an α-DRS try to:
 1. Link (MR) or bind the presupposed information to an accessible antecedent, or
 2. Accommodate the information to a superordinated level of DRS
4. Remove those DRSs from the set of potential readings that violate the acceptability constraints
Accessibility and Subordination

- A DRS B_1 is accessible from DRS B_2 when B_1 equals B_2, or when B_1 subordinates B_2
- A DRS B_1 subordinates B_2 iff:
 - B_1 immediately subordinates B_2
 - There is a DRS B such that B_1 subordinates B and B subordinates B_2
- B_1 immediately subordinates B_2 iff:
 - B_1 contains a condition $\neg B_2$
 - B_1 contains a condition $B_2 \lor B$ or $B \lor B_2$
 - B_1 contains a condition $B_2 \Rightarrow B$
 - $B_1 \Rightarrow B_2$ is a condition in some DRS B
The acceptability constraints

- DRSs should obey the binding rules
- DRSs should not contain free variables
- DRSs should be consistent and informative
- DRSs should also be *locally* consistent and *locally* informative

That is: the resolved DRS should not contain a subordinate DRS K whose falsity or truth is entailed by a DRS superordinate to it. (MR, from v.d.Sandt p. 367)
Free Variable Check

- **Consider the example:**

 Every man likes his car

- **DRS obtained with global accommodation:**

<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>car(y)</td>
</tr>
<tr>
<td>of(y,x)</td>
</tr>
</tbody>
</table>

 `x` `man(x)` `⇒` `like(x,y)`
Consider the example:
Every man likes his car

DRS obtained with global accommodation:

<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>car(y)</td>
</tr>
<tr>
<td>of(y,x)</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c}
 & x \\
\hline
 \text{man(x)} & \text{like(x,y)} \\
\end{array}
\]
Free Variable Check

- Consider the example:
 Every man likes his car

- DRS obtained via intermediate accommodation:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>man(x)</td>
<td>car(y)</td>
</tr>
<tr>
<td>of(y,x)</td>
<td></td>
</tr>
</tbody>
</table>

 \[\Rightarrow\]

 \[\text{like}(x,y)\]
Consider the example: *Every man likes his car*

DRS obtained with local accommodation:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>man(x)</td>
<td>car(y)</td>
</tr>
<tr>
<td></td>
<td>of(y,x)</td>
</tr>
<tr>
<td></td>
<td>like(x,y)</td>
</tr>
</tbody>
</table>
The projection problem solved

- Recall our example:
 If Mia is married, then her husband is out of town

- Local constraints play a crucial role here!
The projection problem solved

- Recall our example:
 If Mia is married, then her husband is out of town

- Local constraints play a crucial role here!
The projection problem solved

- Recall our example:
 If Mia is married, then her husband is out of town

- Local constraints play a crucial role here!

Locally informative

```
x
mia(x)
```

```
z
married(x)
husband(z)
of(z,x)
```

```
⇒
```

```
out-of-town(z)
```

The projection problem solved

Question:
Recall our previous examples:

(1) Either John is not a donkey-owner or his donkey is eating quietly in stable.
(2) If Mia has a husband, then her husband is out of town.
(3) Either John does not have a donkey or his donkey is eating quietly in the stable.
(4) If Mia dates Vincent, then her husband is out of town.
(5) Either John has run out of hay or his donkey is eating quietly in the stable.

For each example, show how the acceptability constraints plus the preference binding > global accomm. > local accomm. determine the projection possibilities of the presuppositions at issue.
Denial

Example:
Vincent does not like his dog.
He does not have a dog!

<table>
<thead>
<tr>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>vincent(x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>dog(y)</td>
</tr>
<tr>
<td>of(y,x)</td>
</tr>
<tr>
<td>like(x,y)</td>
</tr>
</tbody>
</table>
The binding problem solved

Example:
A boxer nearly escaped from his apartment.

Preliminary DRS:
The binding problem solved

Example:
A boxer nearly escaped from his apartment.

Preliminary DRS:

\[
\begin{array}{c|c|c|c}
\hline
x & z & \alpha \\
\hline
\text{boxer}(x) & \text{apartment}(z) & \text{nearly-escaped-from}(x,z) \\
\text{of}(z,x) & & \\
\hline
\end{array}
\]

Final DRS:

\[
\begin{array}{c|c}
\hline
x & z \\
\hline
\text{boxer}(x) & \text{apartment}(z) \text{ of } (z,x) \\
\text{nearly-escaped-from}(x,z) & \\
\hline
\end{array}
\]
Proper Names

- Proper Names can be treated as presupposition triggers
- Only global accommodation is permitted for proper names
- This assures they will always end up in the global (outermost) DRS, accessible for subsequent pronouns
Proper Names

Example:

Every man knows Mia.

She is Marsellus’ wife.

\[
\frac{x \text{ man}(x)}{y \text{ mia}(y)} \Rightarrow \alpha \frac{\text{know}(x,y)}{}
\]
Proper Names

Example:

Every man knows Mia.

She is Marsellus’ wife.

\[
\begin{array}{c|c}
\text{y} & \\
\hline
\text{mia (y)} & \\
\hline
\text{x} & \text{man(x)} \\
\hline
\end{array}
\quad \Rightarrow
\begin{array}{c}
\text{know(x,y)} \\
\hline
\end{array}
\]
Implementation

- The Curt system
- Small fragment of English
 - Pronouns, presupposition triggers
- Uses theorem prover
 - Bliksem
- Uses model builder
 - Mace
- Does all inference tasks