Degree equatives: The same as comparatives?

Doris Penka

Zukunftskolleg & Department of Linguistics

Universität Konstanz

Workshop *Equateive Constructions*

Universität zu Köln
15 December 2016
Equatives in degree semantics

- Degree semantic accounts treat equatives in passing (von Stechow, 1984; Rullmann, 1995; Beck, 2011)
- Standard assumptions:
 - The semantic composition (LF) of degree equatives is the same as for comparatives.
 - The semantics (TC) of degree equatives differs only minimally from that of comparatives.

(1) a. John is older than Mary.
 b. \([\text{DegP} - \text{er} \ [\text{than} \ 1 \ \text{Mary is} \ t_1\text{-old}]]\ 2 \ \text{John is} \ t_2\text{-old}] \)
 c. John’s age > Mary’s age

(2) a. John is as old as Mary.
 b. \([\text{DegP} \ as \ [\text{as} \ 1 \ \text{Mary is} \ t_1\text{-old}]]\ 2 \ \text{John is} \ t_2\text{-old}] \)
 c. John’s age ≥ Mary’s age
The standard semantic analysis makes certain predictions that are adequate for degree equatives in English, but not for equatives in German (and many other European languages).

This necessitates a different semantic analysis of equatives (at least) in German.

⇒ Two different strategies cross-linguistically to express degree equatives
Overview

1. Introduction

2. Standard Analysis
 - Syntax and semantics of degree equatives
 - Prediction 1: Licensing of NPIs in the standard
 - Prediction 2: Negative expressions in the standard

3. Towards an analysis
 - Two different strategies cross-linguistically for equatives
 - Equatives in German as correlative constructions

4. Explaining German equatives
 - Non-licensing of NPIs in the standard
 - Occurrence of negative expressions in the standard

5. Conclusion
I adopt the following terminology from Haspelmath and Buchholz (1998):

(3) Mary is as old as Peter.

comparee parameter marker standard marker standard
Ingredients of the standard analysis
Semantics of gradable adjectives

- Gradable adjectives denote relations between individuals and degrees:

 \[
 \text{[old]} = \lambda x. \lambda d. \text{AGE}(x) \geq d
 \]

- This semantics makes gradable adjectives downward scalar predicates, i.e. they allow inferences from larger degrees to smaller ones.

 \[\text{Peter is 20 years old.} \Rightarrow \text{Peter is 19 years old, Peter is 18 years old} \ldots\]
The standard (+ standard marker) is analysed as elliptical clause with the standard marker being semantically vacuous.

(6) Mary is as old [as₁ Peter is t₁ old]

The parameter marker is an operator that takes the standard clause as its first argument.

(7) [as [as₁ Peter is t₁ old]]₂ [Mary is t₂ old]
Ingredients of the standard analysis
Semantics and pragmatics of equatives

Semantically, the parameter marker is an operator (generalized quantifier over degrees) relating two sets of degrees.

(8) \[[\text{as}] = \lambda D_1 <_{d, t}> . \lambda D_2 <_{d, t}> . \max(D_2) \geq \max(D_1) \]

(9) a. Mary is as old as Peter.
 b. [as [as_1 Peter is t_1 old]]_2 [Mary is t_2 old] \text{ LF}
 c. \max\{d: \text{Mary is } d\text{-old}\} \geq \max\{d: \text{Peter is } d\text{-old}\} \text{ TC}

⇔ Mary’s age ≥ Peter’s age

This *at least*-interpretation can be pragmatically strengthened to an *exactly*-reading by usual scalar implicatures (Horn, 1972).
Prediction 1 of the standard analysis
Licensing of NPIs

- This semantics makes the standard of equatives a downward entailing context (just as the standard of comparatives).

\[(10) \quad D' \subseteq D \]
\[\llbracket as \rrbracket (D)(P) = 1 \text{ (i.e. } \max(P) \geq \max(D))\]
\[\llbracket as \rrbracket (D')(P) = 1 \text{ (i.e. } \max(P) \geq \max(D'))\]

- Thus NPIs are predicted to be licensed in the standard of equatives (just as in comparatives).
- This prediction is borne out for equatives in English:

\[(11)\]
\begin{align*}
\text{a. } & \text{Paris is as quiet as } \text{ever.} \quad \text{(from Seuren, 1984, 114)} \\
\text{b. } & \text{Two glasses was as much as I } \text{cared to drink.} \\
\text{c. } & \text{That was as much as he was willing to } \text{lift a finger } \text{to do.} \\
\text{d. } & \text{Jim is as competent as } \text{anybody } \text{here could possibly be.}
\end{align*}
Prediction 1 of the standard analysis
Licensing of NPIs

But in German, NPIs in are not licensed in the standard of equatives:

(12) *Der Jemen ist so schön, wie ich jemals gedacht habe.
the Yemen is so beautiful how I ever thought have
(from Krifka, 1991, 155)

(13) *Der Palast ist so gross wie sich irgendjemand vorstellen
the palace is so big how REFL anybody imagine
kann.
can
This contrasts with comparatives, in which NPIs are licensed in German:

(14) Der Jemen ist schöner, als ich jemals gedacht habe.
‘The Yemen is more beautiful than I have ever thought.’

(15) Der Palast ist grösser als sich irgendetjemand vorstellen kann.
‘The palace is bigger than anybody can imagine.’
Prediction 2 of the standard analysis
Negation in the standard

- Negation and negative expressions create upward scalar predicates, such that they allow inferences from smaller degrees to larger ones.

(16) Nobody is 20 years old.
 \(\narrow\neg\) Nobody is 19 years old, nobody is 18 years old . . .
 \(\Rightarrow\) Nobody is 21 years old, nobody is 22 years old . . .

- Upward scalar predicates do not have a maximum.
 E.g.: \(\text{max}\{d: \text{nobody is } d\text{-old}\}\) is undefined

- The semantics of the equative operator thus predicts that negative expressions cannot occur in the standard (just as in the standard of comparatives).
Prediction 2 of the standard analysis

Negation in the standard

This prediction is borne out for equatives in English:

(17) a. *John is as happy as never before.
 b. *Mary is as beautiful as no other girl I know.

In German equatives, however, negative expressions can occur in the standard:

(18) Helena ist so schön wie keine andere (Frau).
 ‘Helena is so beautiful how no other (woman)’

This contrasts again with comparatives:

(19) *Helena ist schöner als keine andere (Frau).
 ‘Helena is more-beautiful than no other (woman)’
Prediction 2 of the standard analysis

Negation in the standard

Under the standard analysis it is not possible to derive the correct interpretation of equatives with negative expressions in the standard.

(20) Peter ist so alt wie kein anderer (in seiner Klasse).
Peter is so old how no other (in his class)
‘Peter is older than anyone else (in his class).’

(21) a. [as [as₁ nobody is t₁ old]]₂ [Peter is t₂ old]
 b. max{d: nobody is d-old} is undefined!

(22) a. nobody₃ [as [as₁ t₃ is t₁ old]]₂ [Peter is t₂ old]
 b. ¬∃x[max{d : Peter is d-old} ≥ max{d : x is d-old}]
 ⇔ ¬∃x[AGE(Peter) ≥ AGE(x)]
 ‘Peter is the youngest.’
The operator analysis of degree equatives makes adequate predictions for English regarding the licensing of NPIs and the non-occurrence of negative expressions in the standard. These predictions are, however, not adequate for German, where negative expressions can occur in the standard and NPIs are not licensed.

German equatives are by no means exceptional in exhibiting these properties.

Many other European languages pattern with German in allowing negative expressions in the standard of equatives and disallowing NPIs (Krasikova and Penka, 2012).
Cross-linguistic picture

- These languages use a degree demonstrative as parameter marker and a degree interrogative pronoun as standard marker.

(23) Mary ist **so** gross **wie** Peter.
 Mary is so tall how Peter

(24) Peter ist **so** gross.
 Peter is that tall.

(25) **Wie** gross ist Peter?
 How tall is Peter?

(26) Gianni è alto (**così**) **tanto** quanto Maria.
 Gianni is tall so so-much how-much Maria

(27) Helen jest **tak** wysoka **jak** Maria.
 Helen is so tall how Maria
Equatives as correlative constructions

“In these constructions, the parameter marker is an adverbial demonstrative pronoun and the standard marker is an adverbial relative pronoun that is generally based on an interrogative pronoun. [...] Such correlative equative constructions are clearly based on correlative free relative clauses.”

(Haspelmath and Buchholz, 1998, 288)
Equatives as correlative constructions

Idea: Take this parallel between equatives and correlatives at face value and analyse correlative equative constructions in analogy to other correlative constructions (Dayal, 1995; Brasoveanu, 2012).

- The correlative clause corresponds to a free relative clause and is interpreted as a definite description.
- This definite description is cataphorically picked up by the demonstrative pronoun in argument position.
Semantics of free relative clauses

- Free relative clauses are interpreted as definite descriptions (Rullmann, 1995; Dayal, 1995; Jacobson, 1995).
- Definites are interpreted as denoting the maximally informative object that falls under the relevant predicate (von Fintel et al., 2014).
- The maximally informative object is the one that creates the most informative true proposition. The most informative proposition is defined as the proposition that entails all other relevant propositions.
- With downward scalar predicates, the maximally informative degree corresponds to the maximal degree of which the predicate holds.

\(\text{(28) } \text{MAX}_{\text{inf}}(\lambda d. \text{Peter is } d\text{-old}) = \text{AGE}(\text{Peter}) \)
Semantics of correlative equatives

- German *so* is a degree demonstrative that refers to a contextually given degree (Beck, 2012).

(29) Paul ist 20 Jahre alt. Peter ist auch *so* alt.
Paul is 20 years old. Peter is also that old.

- In correlative equative constructions, *so* picks up the referent of the definite description denoted by the free relative clause. This serves as the degree argument of the adjective.

(30) Peter ist so^2 alt $[\text{MAX}_{\text{inf}} [\text{wie}_1 \text{ Paul } t_1 \text{ alt ist }]]^2$

$[\lambda d'. \text{ Paul is } d'-\text{old }]$

AGE(Paul)

$\text{AGE(Peter)} \geq \text{AGE(Paul)}$
Explaining the non-licensing of NPIs

- NPIs are not licensed in free relatives (Jacobson, 1995).

 (31) *I can read whatever Bill ever read.

- Thus, if the standards of an equative is a free relative clause, we do not expect NPIs to be licensed there.
Explaining the occurrence of negative expressions

Restrictions on negative expressions in the standard

- In itself, the correlative analysis does not explain the occurrence of negative expressions in the standard.
- In particular, we cannot assume that MAX_{inf} applied to an upward scalar predicate yields the minimal degree of which the predicate holds.
- Not all kinds of negative expressions can occur in the standard.

(32) *Peter ist so alt wie Paul nicht.
 Peter is so old how Paul not

(33) Peter ist so gross wie Paul klein ist.
 Peter is so tall how Paul short is
*‘Peter is taller than Paul.’
‘Peter is as tall as Paul is short.’ (deviation from standard)
The presence (or implicit understanding) of certain modifiers is crucial for the acceptability of negative expressions in the standard.

(34) *Diesen Winter gab es so viel Schnee wie letztes Jahr nicht.
this winter gave it so much snow how last year not.

(35) Diesen Winter gab es so viel Schnee wie seit 20 Jahren nicht mehr.
this winter gave it so much snow how since 20 years not anymore.

‘The amount of snow this winter equals the amount of snow we last had 20 years ago.’
Explaining the occurrence of negative expressions

Restrictions on negative expressions in the standard

(36) ??Peter ist so alt wie keiner.
Peter is so old how none

(37) Peter ist so alt wie kein anderer (in seiner Klasse).
Peter is so old how no other (in his class)
‘Peter is older than anyone else (in his class).’
Explaining the occurrence of negative expressions

Contribution of *mehr* ‘anymore’

- The aspectual particle *mehr* ‘anymore’ adds the presupposition that the predicate was true at a previous time.

(38) a. Chiara wohnt nicht mehr in Köln.
 ‘Chiara doesn’t live in Cologne anymore.’
 b. Wohnt Chiara nicht mehr in Köln?
 ‘Does Chiara not live in Cologne anymore?’
 c. Es ist möglich, dass Chiara nicht mehr in Köln wohnt.
 ‘It is possible that Chiara doesn’t live in Cologne anymore.’

(39) Pressupposition:
There is a time preceding the speech time at which Chiara lived in Cologne.
Explaining the occurrence of negative expressions

Contribution of *mehr* ‘anymore’

(40) \[\text{wie}_1 \ es \ seit \ 20 \ Jahren \ nicht \ mehr \ t_1 \ viel \ Schnee \ gab \ \] =
the set of degrees \(d \) such that:
(i) there is a time preceding the speech time by 20 years at which there was \(d \)-much snow; \(\text{PRESUPPOSITION} \)
(ii) there is no time preceding the speech time by less than 20 years at which there was \(d \)-much snow \(\text{TC} \)

- \(\text{MAX}_{inf}[\text{wie}_1 \ es \ seit \ 20 \ Jahren \ nicht \ mehr \ t_1 \ viel \ Schnee \ gab] \) is only defined if there is a degree fulfilling conditions (40-i) and (40-ii).
- If defined, \(\text{MAX}_{inf}[\text{wie}_1 \ es \ seit \ 20 \ Jahren \ nicht \ mehr \ t_1 \ viel \ Schnee \ gab] \) yields the amount of snow 20 years ago.
Explaining the occurrence of negative expressions

Contribution of *mehr* ‘anymore’

(41) Diesen Winter gab es so viel Schnee wie seit 20 Jahren nicht mehr.
not anymore.
‘The amount of snow this winter equals the amount of snow we last had 20 years ago.’

Sentence (41) is true if
- The amount of snow during the last 19 years does not meet or exceed the amount 20 years ago.
 PRESUPPOSITION
- The amount of snow this year is greater or equal to the amount of snow 20 years ago.
 TC
Explaining the occurrence of negative expressions

Contribution of the exceptive phrase

- Exceptive phrases such as *except for x, but x, other than x* trigger the implicature that *x* is the only exception (von Fintel, 1993; Gajewski, 2008).

(42) No student other than Fred attended the talk.
 → Fred is the only student who attended the talk.
 → Fred attended the talk.

(43) \[\text{wie}_1 \text{kein anderer als Peter } t_1 \text{ alt ist} \]
 the set of degrees *d* such that:
 (i) nobody different from Peter is *d*-old;
 (ii) Peter is *d*-old
Explaining the occurrence of negative expressions

Contribution of the exceptive phrase

(44) Peter ist so alt wie kein anderer (in seiner Klasse).
 Peter is so old how no other (in his class)
 ‘Peter is older than anyone else (in his class).’

- \[\text{MAX}_{\text{inf}}[\text{wie}_1 \text{ kein anderer als Peter } t_1 \text{ alt ist }] \] is only defined if there is a degree such that
 (i) nobody different from Peter is \(d \)-old;
 (ii) Peter is \(d \)-old

- If defined, \[\text{MAX}_{\text{inf}}[\text{wie}_1 \text{ kein anderer als Peter } t_1 \text{ alt ist }] \] yields Peter’s age.

- Sentence (44) is true if
 - Nobody meets or exceeds Peter in terms of age. \quad \text{PRESUP.}
 - Peter’s age is greater or equal to Peter’s age. \quad \text{TC}
In general, the modifier phrases have the effect of making the degree predicate doubly bound, i.e. the corresponding set of degrees has a minimum as well as a maximum.

This raises the question why the presence of mehr ‘anymore’ and exceptive phrases rescues negative expressions under the correlative analysis, but not under the operator analysis.

Tentative answer: MAX_{inf} takes into account non-truth conditional restrictions (presuppositions, implicatures), while the max-operator does not.
Cross-linguistically, there seem to be two different strategies to form degree equatives.

The first strategy, represented by English, employs an equative operator parallel to the comparative operator.

According to the second strategy, represented by German, equatives are correlative constructions. The standard clause denotes a definite degree, which is picked up by a degree demonstrative in the matrix clause.

The strategy employed by a language has consequences for the possibility of NPIs and negative expressions in the standard.
References I

References II