
POSTER TEMPLATE BY:

www.PosterPresentations.com

A Transliteration System for Urdu/Hindi Integrated in the Urdu
ParGram Grammar

Tafseer Ahmed† / Tina Bögel† / Miriam Butt† / Sarmad Hussain‡ / Muhammad Kamran Malik‡ / Ghulam Raza† /
 Sebastian Sulger†

Universität Konstanz†, CRULP, FAST-NUCES ‡

Transliteration – why and what for?

OPTIONAL
LOGO HERE

OPTIONAL
LOGO HERE

Transliterator Pipeline Architecture for Urdu

INPUT (Unicode Urdu Text)

STEP 1: NORMALIZATION (Normalize Input Text to Composed Form)

STEP 2: DIACRITIZATION (Add Aerabs to Normalized Form)

STEP 3: UNICODE TO URDU ZABTA TAKHTI CONVERSION (Convert Unicode Encoding to UZT)

STEP 4: TRANSLITERATION (Transliterate UZT Code into Letter-Based ASCII Scheme)

OUTPUT (Letter-Based ASCII Scheme Transliteration)

Particularities of the Urdu Script

The Basic Architecture

STEP 1: NORMALIZATION

STEP 2: DIACRITIZATION

STEP 3: UNICODE TO URDU ZABTA TAKHTI
CONVERSION

STEP 4: TRANSLITERATION

Evaluation of the Transliterator

References

 Urdu: Arabic script Hindi: Devanagari script

Urdu: Script uses extended Arabic character set

• Full letters for consonants, aerabs (diacritics) for vowels

• Written Urdu: Aerab diacritics are not common

 Ambiguity: Difficult to interpret the string

• Four different types of full characters in Urdu

(1) Simple consonant characters
(2) Dual behaviour characters
(3) Vowel modifier character
(4) Consonant modifier character

• Extensive borrowing from Arabic/Persian

 Foreign spelling retained in written Urdu
 Arabic/Persian graphemes map onto a single Urdu phoneme
 (e.g., س , ث , ص all map to /s/).

Integration in the XLE Program

Goal: Transliterate from Unicode Urdu to ASCII scheme

• Component-based approach: Pipeline implemented in C++ using
 four separate modules (see center)

• Components can be used as standalone applications

 Transliterator: Integrated in a computational grammar based on
Lexical-Functional Grammar framework using Xerox Linguistic
Environment (XLE) grammar development platform (Butt and
King 2007).

Unicode Arabic: Characters can be written in two ways

 Composed form: Single entity in Unicode block

Alef madda: آ ā

• Decomposed form: Combined out of 2 or more characters

Alef: ا a

+ lengthening diacritic madda: ٓ
 To avoid a duplication of rules, the input text is normalized to
composed character form.

Vowel diacritics are normally not written in Urdu

 Urdu Lexicon Data (Center for Research in Urdu Language
Processing; 80.000 diacritized words)

 Lexicon lookup: Place diacritics in input text by looking up
 words in the lexicon

 Ambiguity created by absence of aerab diacritics is resolved

Test Corpus Size
A = Cw / Tw

(diacritized input)

A = Cw / Tw
(input without diacritics, with

foreign words)

1000 0.995 0.925

Urdu Zabta Takhti (UZT): Standard encoding for Urdu language
processing

• UZT: Maps Unicode Urdu characters onto unique number
sequences (Afzal and Hussain 2001)

• UZT: Developed because there was no standard industry
codepage available

Included in pipeline for reasons of compatibility

a) Urdu Unicode text:
čābī چابی

b) UZT-converted text:
čābī 898083120

Afzal, Muhammad and Hussain, Sarmad. 2001. Urdu Computing Standards: Development of Urdu
Zabta Takhti (UZT) 1.01. In Proceedings of the 2001 IEEE International Multi-topic Conference,
pages 216– 222.

Beesley, Kenneth and Karttunen, Lauri. 2003. Finite State Morphology. Stanford, CA: CSLI
Publications.

Butt, Miriam and Tracy Holloway King. 2007. 'Urdu in a Parallel Grammar Development Environment'.
In T. Takenobu and C.-R. Huang (eds.) Language Resources and Evaluation: Special Issue on Asian
Language Processing: State of the Art Resources and Processing 41, pages 191-207.

Hussain, Sarmad. 2008. Resources for Urdu Language Processing. In Proceedings of the 6th
Workshop on Asian Language Resources, IIIT Hyderabad.

Transliteration using Finite-State Machinery: Fast & efficient

 Transliteration rules convert number-based UZT notation to
ASCII-based transliteration scheme

• Rules compiled into a finite-state machine using the Xerox Finite-
State Tools (XFST; Beesley and Karttunen 2003)

a) UZT-converted text:
čābī 898083120

b) Transliterated, letter-based ASCII notation:
čābī cAbI

• Loan words from Arabic/Persian include graphemes from these
languages

 Some Urdu graphemes map onto the same phoneme:

/s/ س , ث , ص

Solution:

 Map genuine Urdu character to general letter, foreign characters
to variants – keeps lexicon easy to read in most cases!

s س
 s3 ص ; s2 ث

• Sample test data: 1.000 unique high frequency words

• Data taken from 18 million word corpus (Hussain 2008)

Accuracy of the system:

Accuracy: A = Cw / Tw

A : Accuracy of the system
Cw : Words correctly transliterated
Tw : Total number of words taken as input

XLE grammar development platform: Load Morphological Analyzer and LFG grammar, parse text, produce syntactic structures

The same text – two different scripts...

We would like to handle both!
(Although we focus on Urdu for the time being.)

Solution:

 Abstract away from each script to a common transliteration

 Use one lexicon and grammar for both languages

/f/

/j/ or /æ/

/~/

/h/
Urdu Transliterator Program

gARI calI گاڑی چلی
XLE Pipeline:

 Morphology: Encoded in ASCII-based transliteration of Urdu/Hindi

 Both Urdu and Hindi will be able to be processed via a single lexicon file, grammar and morphological component

 Facilitates lexicon development and reduces the grammar development effort

Hindi Transliterator Program

गारी काली gARI calI

Morphology

gARI:
gARI+Noun+Fem+Sg

Syntax

Contact email: sebastian.sulger@uni-konstanz.de

	Slide 1

