
Issues at the Morphology-Syntax Interface in
the Urdu ParGram Grammar

June 9, 2007

Abstract

70-150 words

1 Introduction

As part of the ParGram project (Butt et al. 1999, 2002), we aredeveloping a
grammar for the South Asian language Urdu. Very few resources exist for this lan-
guage, in particular, no broad-coverage finite-state morphological analyzer exists
to date. Part of the Urdu Grammar project is therefore to build a finite-state mor-
phological analyzer for Urdu and to connect it up with the syntax via the interface
(Kaplan et al. 2004) defined for Lexical-Functional Grammar(LFG; Dalrymple
2001).

Current features of the Urdu ParGram project in the context of parallel gram-
mar development have already been discussed elsewhere (Butt and King 2007). In
this paper, we focus on some issues that have arisen with respect to the morphology-
syntax interface in particular. All the (larger) ParGram grammars to date include a
finite-state morphological analyzer that interfaces with the syntax. These morpho-
logical analyzers are generally built with the Xerox finite-state technology tools
and follow the methodology established by Beesley and Karttunen (2003). The
finite-state tools and the solutions already proposed by Beesley and Karttunen
(2003) prove to be more than adequate to meet the challenges posed by Urdu.
However, some interesting issues do arise with respect to 1)the script and tok-
enization (sections 2 and 2.2); 2) reduplication (section 3) ; 3) deciding how to
deal with potentially ambiguous information in terms of themorphology-syntax
interface (section 4).

1

2 Two Different Scripts, One Representation

Urdu is structurally almost identical to Hindi. The major difference is that the
vocabulary of Urdu bears more Persian/Arabic influeneces, while the vocabulary
of Hindi is more Sanskrit based. Both are ultimately descended from a version
of Sanskrit (i.e., are Indo-European). Urdu as a separate version of the language
came into being when the Moghuls invaded the Indian subcontinent. The language
of their court was Persian, which came into contact with a local language generally
referred to as Hindustani (or Hindi). The very Persianized version of this language
came to be known as Urdu.1

This brief historical sketch is of relevance for morphological analysis because
lexical items borrowed in from Persian tend to behave differently (i.e., have dif-
ferent inflectional possibilities). However, questions oflexical and morphological
origin tend to be minor issues. A more major issue is that Urduand Hindi are writ-
ten in very different scripts. Urdu is written with a versionof the Arabic script and
it is only recently that unicode fonts for this script have been developed (e.g., see
http://www.crulp.org ; Rahman and Hussain 2003). Hindi, in contrast,
is written inDevanagari, a phonetic-based script passed down over the millenia
from Sanskrit.

2.1 A Common Transliteration System

Examples (1) and (2) show a couplet (162,9) from the poet Mirza Ghalib (1797–
1869): (1) is written in Urdu, (2) is the same couplet, but written in Devanagari
(Hindi). Note that Urdu is written left-to-right, whereas Hindi is written right-to-
left.

(1)

1Modern Hindi naturally also bears traces of language contact with Persian, but not as markedly
as Urdu.

2

(2)

Although the two writing systems differ markedly, the languages they are en-
coding are structurally almost identical. Given this fact,our general strategy in
building a morphological analyzer is to produce a resource that can be used for
text written in both Urdu and Hindi. This involves building atransliteration sys-
tem that goes from whichever script is being processed to a common ASCII base
and then being able to generate back out from the common ASCIIbase to either
one of the scripts. That is, both the texts in (1) and (2) wouldbe rendered as the
ASCII transliteration in (3).

(3) hAN bHalA kar tirA bHalA hOgA
yes good.M.Sg do then good be.Fut.M.Sg

Or darvES kI sadA kyA he
and dervish Gen.F.Sg call.F.Sg what be.Pres.3.Sg
‘Yes, do good then good will happen, what else is the call of the dervish.’

Our transliteration is based on proposals by Glassman (1977). Capitalized
vowels indicate length, H marks aspiration, N nasalization, S stands forS and
other capitalized consonants indicate retroflexes.

A transliterator which implements our strategy has been implemented by Ab-
bas Malik (2006). Malik’s HUMTS (Hindi-Urdu Machine Transliteration System)
is written as a cascade of finite-state transducers and transliterates from the Urdu
and Hindi scripts to SAMPA (Wells 1997), a common underlyingphonetic ASCII
alphabet. While this is in pricinple a good idea because SAMPA has been devel-
oped to enable coverage of all the world’s languages, for thepurposes of Urdu, it
is unwieldy and very difficult to read. In integrating Malik’s work into the Urdu
grammar, we will therefore move to the transliteration proposed by Glassmann.
Beyond the simple conversion of letters that is necessary todo this, we anticipate
no further (major) problems as HUMTS was written with the same XFST tools
used in our Urdu grammar project.

2.2 Future Morphology: Illustrating Tokenization Problem s

Writing a transliterator that takes one script as an input and is able to output an-
other script is not an easy task. Many of the problems that arise are discussed in

3

Malik’s work. In terms of the Urdu Grammar, most relevant to us are problems
of tokenization. Just one of the problems is illustrated here in a representative
manner with respect to the future morphology in Urdu/Hindi.

We already had an example of future usage in (1) and (2). An inspection
of each example will quickly reveal one of the very general problems in dealing
with the Urdu script: while in Hindi, each word is clearly demarcated and easy to
identify, in Arabic-based scripts in general, word boundaries are very difficult to
identify. One must basically know the language (i.e., be able to access the lexical
items in the language) in order to be able to read the script.2

Beyond this very general problem that a tokenization of Urduposes, the scripts
also encode differences of opinion as to what exactly a word is. This is illustrated
in (1) and (2) with respect to the future form of ‘be’hOgA. In (1) it is expressed
by the last two letter groups on line one (reading from right to left). In (2), the
form is expressed by just one letter group: the last one (reading from left to right)
on line 1. This difference in encoding reflects an on-going historical change in
progress.

The future in Urdu/Hindi is formed as shown in the paradigm (4) for the stem
mAr ‘hit/kill’. The stem is followed by information about person and number
(UN/E/EN/O), to which the future markerg is attached. This, finally, is followed
about information about number and gender.

(4) Urdu Future Paradigm
Singular Plural Respect(ap) Familiar (tum)
M/F M/F M/F M/F

1st mAr-UN-g-A/I mAr-EN-g-E/I
2nd mAr-E-g-A/I mAr-EN-g-E/I mAr-O-g-E/I
3rd mAr-E-g-A/I mAr-EN-g-E/I

mAr- ‘hit’

The future paradigm is thus a relatively complex assemblageof morphological
pieces. The person/number morphology is identical to that used in the subjunctive
paradigm, shown in (5). To these essentially subjunctive forms, a-g- is attached
to mark the future. The consensus in the available literature is that the future
-g- is derived from a Sanskrit participle of the verbgā ‘go’ (Kellogg 1893, Beg
1988, McGregor 1968). This analysis immediately explains the gender and num-
ber agreement morphology (A/I/E) exhibited by the future. Participles functioned

2The same is not true for Devanagari, which, being phonetically based, allows a sounding out
of the words.

4

like adjectives and so generally had number and gender agreement morphology.
This morphology has simply been retained in all the verb forms in Urdu/Hindi that
derive from old participles (i.e., the perfect, imperfect and progressive forms), in-
cluding the future.

(5) Urdu Subjunctive Paradigm
Singular Plural Respect(ap) Familiar (tum)

1st mAr-UN mAr-EN
2nd mAr-E mAr-EN mAr-O
3rd mAr-E mAr-EN

mar- ‘hit’

The old participle of the verbgā ‘go’ used to form its own word. Indeed, as
recently as a century ago, clitics like the emphatichI ‘even/only’ could intrude
between the-g- and the stem+subjunctive morphology. This is illustrated in (6).

(6) a. kAh-ũ=hi=ga
say-1.Sg-Emph-Fut.M.Sg
‘I will say (it), of course.’ (Hindi, from Kellogg 1893:§399)

b. man-e=h̃i=gi
heed-3.Sg-Emph-Fut.F.Sg
‘She will (have to) see reason.’ (Hindi, from Kellogg 1893:§399)

These examples suggest that while the old participle was no longer function-
ing as an independent word a century ago, it still retained some sort of prosodic
independence and was probably functioning as a clitic (as the glossing in terms of
‘=’ indicates). This is entirely consonant with well known processes of historical
change whereby words are reanalyzed as clitics and then inflectional morphology
as they move from being content words to functional elements(e.g., Harris and
Campbell 1995, Hopper and Traugott 1993).

The examples in (6) are only marginally possible in modern Urdu, whereas
speakers of Hindi tend to reject them outright. This difference in native speaker
judgements may or may not be correlated with the differencesencoded in the
writing system. Recall that in written Hindi, the future is expressed in one word
together with the subjunctive stem. In Urdu however, the stem+subjunctive and
the future+number+gender are generally written as two separate words.

In both languages all the pieces of morphology involved nevertheless perform
exactly the same function, so our morphological analyzer should treat them in

5

parallel. In the morphological analyzer, the future-g- is treated as an inflectional
morpheme and a form likemArEgIwould be analyzed as in (7).

(7) mArEgI⇔
mAr+Verb+Subjunct+2P+Sg+Fut+Fem
mAr+Verb+Subjunct+3P+Sg+Fut+Fem

The tokenizer thus has to turn the Urdu input ofmArE gI into mArEgI. This in
and of itself does not present a problem, since the deletion of white space is not
a problem. In principle, since forms likemarEare also words in their own right,
a serious ambiguity problem could arise. However, asgI/gA/gEare not words in
their own right, there is no problem given our basic approach.

Other problems with tokenization do, of course, exist. The future morphology
provides just one example of potentially problematic factors that must be dealt
with. Another, perhaps more interesting problem is that of reduplication.

3 Reduplication

Urdu/Hindi, like most of the South Asian languages, tends touse reduplication
quite frequently (Abbi 1991). All content words can generally be reduplicated
and the effect of the reduplication is to either strenghthen/emphasize the original
word or to express something like “and those kinds of things”.

(8) a. kHAnA vAnA
food.M.Sg. Redup
‘food and those kinds of things’

b. tHanDA tHanDA
cold.M.Sg. Redup
‘ice cold (cold cold)’

There are two different kind of reduplication strategies. In the one illustrated
by (8a), the onset of the content word is replaced with another consonant. This
consonant could be eitherv, t. (T) or S (S). In another strategy ((8b)), namely
the word is simply repeated. The former strategy is generally described asecho
formationor echo reduplication.

In this section, we show the solutions implemented in our finite-state morpho-
logical analyzer for verbs, adjectives and nouns. While thegeneral strategy for
dealing with reduplication is similar, each of these word classes presents some
specialized problem that needs to be dealt with as well.

6

3.1 General Strategy

Generally, reduplications are written as seperate words inboth Urdu and Hindi.
The fundamental problem facing the tokenizer is thus the fact that a reduplicated
item must be recognized. The transliteration system will yield two words, as
shown in (9), for example, which are separated by white space.

(9) calnA valnA
walk.Inf.M.Sg Redup
‘walking and such things’

Our morphological analyzer basically follows the solutionfor full word redu-
plication presented by Beesley and Karttunen (2003) for Malay. The basic lexicon
built independently of reduplication for nouns, verbs, adjectives and other content
verbs interacts with regular expressions that are formulated to allow for redupli-
cation.

The morphological analysis of reduplications as in (9) is asshown in (10).
That is, within the morphological analyzer, the reduplicated form is simply regis-
tered via the tag +REDUP and is passed on as such to the Urdu grammar, which
can decide how to use this information (or whether to use the very subtle semantic
information implied by reduplication at all).

(10) cal+Verb+Inf+Masc+Sg+Redup

In the Malay example presented by Beesley and Karttunen, theoriginal word
and the reduplicated part are merged into a single word. Our implementation thus
differs from theirs in that we need to deal with the white space. Currently, we deal
with this by introducing the multiword%Hyphen into the lexc source file. When
dealing with reduplication, we thus internally represent the two words involved as
being connected with a hyphen.

Reduplication itself is managed via the introduction of themulticharacter brack-
ets"ˆ[" and"ˆ]" , which mark the domain of reduplication. When reduplica-
tion has successfully been applied the compile-replace operator must be invoked
in order to apply a bracket filter that removes the brackets. In a further step, the
hyphen introduced for internal management is also eliminated and replaced with
a white space.

This part of the process is illustrated with respect to just the adjective ‘cold’ in
terms of simple reduplication by the code shown below. The first part reproduces
a lexc file whichNEED SOME TEXT SAYING EXACTLY WHAT THIS PROGRAM

DOES HERE.

7

*** *********************
* !lexc file just illustrating tHanDa

* !AdjRedup.txt

*
* Multichar_Symbols

* +Adj +Unmarked +Redup +Intensifier

*
* Lexicon Root

* 0:ˆ[[{ Unmarked ;

*
* Lexicon Unmarked

* tHanDA Ending ;

*
* Lexicon Ending

* +Adj+Unmarked+Redup+Intensifier:}%Hyphen]ˆ2ˆ] # ;

* +Adj+Unmarked:}]ˆ1ˆ] # ;

*
*** ********************
* !AdjReduprules.txt

* [˜ [? * "ˆ[" ˜$["ˆ]"]] & ˜[˜$["ˆ["] "ˆ]" ? *]];

* ! bracket filter

*
*** ********************
* !hyph.txt

* [%Hyphen -> 0 || %Hyphen ? * _]

* .o.

* [%Hyphen -> " "] ;

* ! removes ’%Hyphen’ and inserts an empty string

*
*** ********************

*** ********************
* "commands"

*
* xfst[0]: read regex < AdjReduprules.txt

* xfst[1]: read lexc < AdjRedup.txt

* xfst[2]: compose net

* xfst[1]: compile-replace lower

8

* xfst[1]: save stack AdjRedup.fst

* xfst[1]: clear

* xfst[0]: read regex < hyph.txt

* xfst[1]: load stack AdjRedup.fst

* xfst[2]: compose net

* xfst[1]: up thanDA

* t h a n D A +Adj+Unmarked

* xfst[1]: up thanDA thanDA

* t h a n D A +Adj+Unmarked+Redup+Intensifier

*
*** **********************

The second part shows the commands (to be saved in an xfst script file), which
results in the complete analyzer for adjectives.MORE NEEDS TO BE SAID HERE

AS WELL — WHAT ARE ALL THESE FILES??? WHERE ARE THEY? WHAT ’ S IN

THEM? ETC.
The example above also illustrates the general strategy with respect to redu-

plication. The lexicon (lexc file) itself must be amended to allow for whole word
reduplication in principle. The reduplication itself mustbe formulated by means
of regular expressions, delimited by the multicharacter brackets"ˆ[" and"ˆ]" .
Then, a bracket filter is composed onto the lexicon, which aims at blocking all
strings containing unmatched brackets. Next, the compile-replace algorithm is
called, which translates the reduplication formulated by"[...]ˆ2" into well-
formed strings of this scheme: [...]-[...]. After having accomplished reduplication,
the hyphen and the brackets are eliminated as already described above.

3.2 Echo Formation

In order to allow for the type of reduplication where the firstconsonant is replaced
in the reduplicated part, replace rules need to be put into place.

THIS NEXT BIT WRITTEN BY TINA WOULD SEEM TO BE INTREST-
ING IT SHOULD AT LEAST MAKE IT INTO A FOOTNOTE, BUT I NEED
IT TO BE EXPLAINED BETTER AND CAREFULLY WITH RESPECT
TO EXAMPLES AND EXAMPLE CODES

There are two problems in this kind of morphology one has to deal with care-
fully: 1) The compile-replace brackets can never be on the same line as a regular
expression (you could not for example add it to the LEXICON Suffix and finish

9

there) 2) The{ }, which is here used as a separation between the two words de-
riving from the reduplication does have an unwanted consequence. After putting
everything on the stack one gets the right output but one cannot apply up a redu-
plicated word: apply up bacca bacca will result in a fault. and 0 are not an option
since does result in the same problem and 0 will not form a white space. If
one chooses to use a symbol between the words, e.g. a hyphen, the apply up will
work: apply up bacca-bacca- will result in an analysis. (I amnot sure what the
reason isis this what the tokenizer does you wanted us to build? I have not solved
this yet but I am trying; up to then I use the she uses the records with me I cannot
test if this solution returns an analysis; perhaps this is also a fault of the windows
version because hers seems to work. I cannot see the difference between turning
and implementing in the Lex)

The rules shown below exemplify just two cases: either the first consonant
(onsets tend to be just simple consonants) is replaced by av, or if there is no onset
as in (11), av is inserted. Similar rules are formulated for reduplication versions
with t. or S.

(11) EXAMPLE HERE

define Cons [b | c | d | f | g | h | j | k | l | m
| n | p | q | r | s | t | v | w | x | z];

Cons -> v || ? * %_ _ ?* "@P.ECHO.v@" ! use { } instead of %_
.o.
a -> v a , e -> v e , i -> v i, o -> v o, u -> v u || ? * %_ _ ?*
%%"@P.ECHO.v@"

NEED TO EXPLAIN EXACTLY WHAT THIS DOES

4 Issues in Potential Ambiguity

4.1 Politeness and the Subjunctive

When addressing the second person of the plural in the subjunctive, Urdu has two
grammatically ambivalent forms with different endings:

+2P+Pl:O+Subjunct FutFlagPl; !used when addressing people of lower status,
children

10

+2P+Pl:EN+Subjunct FutFlagPl; !used when addressing people of higher sta-
tus, perhaps encode courtesy?

The two forms differ in their discourse functions. Usually,the first form is
used only when addressing children or people of lower socialstatus; the second
form, in contrast, is needed mainly for addressing people ofequal or higher social
status.

4.2 Infinitives vs. Verbal Nouns

Another peculiarity of Urdu verbs is that the infinitive can actually serve as a
noun.[EXAMPLES]The resulting questions then are whether these forms should
be analyzed in the verb or in the noun lexicon and how the verbal origin of the
nouns can be annotated in the sublexical rules. We put forward the following
solutions to these questions. Any verbal morphology shouldbe included in the
verb lexicon, including infinitives, no matter as to their actual function. As to the
sublexical rules, the infinitival suffix +Inf could be given the following annotation:

+Inf (ˆNTYPE verbal).

This would result in providing a value verbal for the featureNTYPE, which
tells us that the origin of the noun is a verb. The feature mustof course be present
to receive the value, which is intentional, because the feature is only present in the
syntax if the string is analyzed as a noun.

4.3 Deadjectival Nouns

Like Urdu nouns, adjectives are divided into two groups: those which have suf-
fixes that change to show gender and number (marked adjectives) and those which
do not (unmarked adjectives).

Many adjectives in Urdu can also be used as nouns, which brings up the ques-
tion, whether this should be dealt with in the morphology or the syntax of the
grammar. My first intention was to deal with this phenonema solely in the mor-
phology by creating different continuation classes with the according tags.

As previous attempts to handle the problem have shown, this turns out to be
quite difficult when implemented in the grammar (or why did Martin Forst imple-
ment this in the syntax instead of the morphology?)

A very simple possibility would be:A: (ˆ SUBJ)= ! , but the morphology
should be changing as well, or can that be done in the syntax? Problem in morph:
syntax only realizes Adj at the mo, not Noun -¿ probably my mistake

11

References

Abbas Malik, M.G. 2006. Hindi Urdu machine transliterationsystem. MSc The-
sis, Paris 7.

Abbi, Anvita. 1991.Reduplication in South Asian Languages. An Areal, Topolog-
ical and Historical Study.. New Delhi: Allied.

Beesley, Kenneth and Lauri Karttunen. 2003.Finite State Morphology. Stanford,
CA: CSLI Publications.

Beg, Mirza Khalil A. 1988.Urdu Grammar: History and Structure. New Delhi:
Bahri Publications.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Chris-
tian Rohrer. 2002. The Parallel Grammar project. InProceedings of the 19th
International Conference on Computational Linguistics (COLING), Workshop
on Grammar Engineering and Evaluation, pages 1–7. Taipei, Taiwan.

Butt, Miriam and T.Holloway King. 2007. Urdu in a parallel grammar develop-
ment environment.Language Resources and EvaluationSpecial Issue on Asian
Language Processing: State of the Art Resources and Processing.

Butt, Miriam, Tracy Holloway King, Marı́a-Eugenia Niño, and Frédérique
Segond. 1999.A Grammar Writer’s Cookbook. Stanford, CA: CSLI Publi-
cations.

Dalrymple, Mary. 2001.Lexical Functional Grammar. New York: Academic
Press.

Glassman, Eugene H. 1977.Spoken Urdu. Lahore: Nirali Kitaben.

Harris, Alice C. and Lyle Campbell. 1995.Historical Syntax in Cross-Linguistic
Perspective. Cambridge: Cambridge University Press.

Hopper, Paul J. and Elizabeth C. Traugott. 1993.Grammaticalization. Cambridge:
Cambridge University Press.

Kaplan, Ronald M., John T. Maxwell III, Tracy Holloway King,and Richard
Crouch. 2004. Integrating finite-state technology with deep LFG grammars.

12

In Proceedings of the European Summer School on Logic, Language and In-
formation (ESSLLI) Workshop on Combining Shallow and Deep Processing for
NLP.

Kellogg, S. H. 1893. Grammar of the Hindi Language. Delhi: Munshiram
Manoharlal Publishers Pvt. Ltd. Second Edition, reprinted1990.

McGregor, R.S. 1968.The Language of Indrajit of Orch̄a. Cambridge: Cambridge
University Press.

Rahman, S. and Sarmad Hussain. 2003. Development of character based urdu
nastaleeq font.Asian Media and Communication Bulletin33(2). AMIC, School
of Communication and Information, Nanyang Technological Univ., Singapore.

Wells, J.C. 1997. SAMPA computer readable phonetic alphabet. In D. Gibbon,
R. Moore, and R. Winski, eds.,Handbook of Standards and Resources for Spo-
ken Language Systems. Berlin and New York: Mouton de Gruyter. Part IV,
section B.

13

