Urdu and the Modular Architecture of ParGram

Tina Bögel, Miriam Butt, Annette Hautli, Sebastian Sulger

Universität Konstanz

CLT 2009, Lahore
Introduction

- ParGram: NLP project based on Lexical Functional Grammar (LFG)
 - building large-scale, robust grammars
 - larger grammars: English, French, German, Japanese, Norwegian, Turkish
 - smaller grammars: Arabic, Chinese, Georgian, Malagasy, Urdu, Welsh
- LFG parsing and generation using a modular type of architecture
- this talk: description of the modules used for the grammar; short demos of two of the modules
Introduction

- modules of the grammar: tokenizer, morphological analyzer, syntactic rules, prosodic projection, semantics interface
- modules are connected using development platform XLE
- ParGram architecture design allows for robust, large-scale parsing and generation and satisfactory treatment of language-specific phenomena
Overall Architecture

- tokenizer and morphological analyzer: finite-state machines using the Xerox Finite-State Calculus (xfst)
- morphological analyzer feeds into syntactic rules component
 - morphological tagging interacts with syntactic rules
 - syntactic analyses are informed by theoretical work within LFG
 - c(onstituent)-structure and f(unctional)-structure are produced by the XLE platform
- phonological rules, built in the syntactic module, rephrase prosody (result: p-structure)
- syntactic structures provide basis for semantic analysis
Overall Architecture

tokenizer & morphology (FST)

\[\downarrow \]

syntax (f- and c-structure) \rightarrow prosody (p-structure)

\[\downarrow \]

semantics (XFR ordered rewriting)

Overall modular architecture of ParGram Urdu grammar
Morphology

- implemented using a finite-state machine
- functions as “black box”
 - usable tag output for XLE - but could be replaced by other morphological resources
 - morphology is a stand-alone resource - may be used for other applications
- connected up to the syntax using a morphology-syntax interface
 - morphological information can easily be extracted from the finite-state machine
 - system allows broad vocabulary coverage
 - system allows description of language-specific morphological phenomena like reduplication, future formation, etc.
Morphology

- Sample output of morphology lexicon: MORPHOLOGY
 laRk+Noun+Fem+Sg
- Tags are used as input for syntax component: INTERFACE
 +Fem GEND xle @(GEND fem)
 +Sg NUM xle @(NUM sg)
- Features are displayed in c- and f-structure: SYNTAX

```
CS 1:  N
    /|         \
   / |         |
NOUN-S_BASE N-T_BASE GEND_BASE NUM_BASE
  laRk   +Noun  +Fem   +Sg

"laRkI"
```

Tina Bögel, Miriam Butt, Annette Hautli, Sebastian Sulger
Universität Konstanz
Urdu and the Modular Architecture of ParGram
Syntax component is at the core of Urdu grammar

theoretical background: LFG

well-studied (~ 30 years) framework with computational usability

c- and f-structures used for syntactic representation

- c-structure: basic constituent structure ("tree") and linear precedence (~ what parts belong together)
- f-structure: encodes syntactic functions and properties
Syntax

- size: 40 phrase-structure rules, annotated for syntactic function
- coverage: basic clauses with free word order, verbal complex, tense and aspect, causative verbs, complex predicates
- **Demo:** Complex Predicates
Prosody

- LFG architecture allows for additional projections
- Prosody implemented as additional layer on top of syntax
- Prosodic information important for correct understanding/disambiguation of a sentence
- Experimental p(rosodic)-structure in order to model complex phonological properties of clitics, especially Urdu Ezafe
Prosody - Urdu Ezafe

- Urdu Ezafe: loan construction from Persian
- calls for modifier (adjective or noun) to the right of head noun: not in line with usual Urdu head-final pattern
- example:
 a. sher=e panjAb lion=Ez Punjab 'A/The lion of Punjab'
 b. sadA=e buland voice=Ez high 'high voice'
modifiers is licenced by Ezafe

Ezafe is head of Ezafe phrase constituent

complement of Ezafe modifies head noun
Prosody - Urdu Ezafe

- Ezafe is clitic: it attaches to the end of a constituent, which is not possible for inflectional morphology
 - example shows clitic status of Ezafe:
 \[[maal \ o \ daulat]=e \ dunyaa\]
 material and wealth=Ez world
 ‘the material and wealth of the world’

- within prosody, the clitic Ezafe is integrated in the prosodic phrase to its left - not modeled at level of syntax
- additional level: p-structure
- Ezafe is coded as part of the head noun within p-structure:
f-structures within XLE are coded in Prolog

for semantics, we take Prolog code and apply ordered rewrite rules (XFR) on it

- reasonable approach, as f-structures are equivalent to quasi-logical forms

input f-structure is consumed step by step by the rewrite rules

XLE produces output semantic form

world knowledge may also be included (English ParGram grammar uses WordNet as knowledge base)

Demo: Semantics module
Urdu ParGram project devoted to developing a large-scale, broad-coverage LFG parsing and generation grammar using XLE

- pipeline architecture: single components may be used in other contexts
- informed by well-studied linguistic insights from LFG theory

- currently experimenting with additional annotation using p-structure (prosody) and XFR rewriting (semantics)
- LFG/XLE methodology: powerful, effective, proven and tested