
The Feature Space in Parallel Grammar Writing

Tracy Holloway King, Martin Forst, Jonas Kuhn, and Miriam Butt
Palo Alto Research Center, IMS Stuttgart, University of Texas at Austin, and
Universität Konstanz

Abstract. This paper discusses the methodology and tools applied in the Parallel
Grammar project (ParGram) to support consistency and parallelism of linguistic
representations across multilingual Lexical Functional Grammar (lfg) grammars.
A particular issue is that the grammars in the ParGram project are developed at
different international sites. The approach that was established over several years
relies on (i) a technical tool for checking adherence to the best-practice feature
declaration for linguistic representations, (ii) the coordinated, systematic use of
templates for expressing generalizations across lexicon entries and grammar rules,
and (iii) a grammar code reviewing committee in which extensions to the existing
representations are critically discussed.

Keywords: lfg, parallel grammars, feature space, templates, grammar engineering

1. Introduction

At the very minimum, multilingual grammar development requires
agreement on a common set of representations and broad agreement
on the analyses of linguistic phenomena. Some advantages of this are
the following: it reduces the amount of work required for adding an ad-
ditional component to the various grammars, such as semantic analysis;
it makes it easier for grammar engineers to maintain several grammars
at the same time and faster to add a grammar for a new language
to the family of grammars. On the application side, a common set
of representations facilitates porting a language-technological system
that applies one of the grammars to the other languages from within
the multilingual development effort; and it is indispensible for certain
multilingual applications like machine translation.

Discussions about the proper analysis and representation of phe-
nomena such as subject-verb agreement, case marking, relative clauses,
or the treatment of adjectives or adverbials can be conducted at a
very high linguistic level. Ultimately, though, differences in opinion
are reified at a very low level of engineering. Since its inception in
1995, the Parallel Grammar (ParGram) project has therefore included
a “feature committee,” whose job is to find norms for the use and
definition of a common multilingual feature space. Adherence to feature
committee decisions is technically supported by a routine that checks
the grammars for compatibility with a feature declaration. Parallelism

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.1

2 King, Forst, Kuhn, and Butt

at the level of grammatical constraints or descriptions is facilitated by
systematic use of means of abstraction in the grammar specification
code.

The ParGram project is an international collaboration aimed at
producing broad-coverage computational grammars for a variety of
languages ((Butt et al., 1999; Butt et al., 2002); see (Riezler et al.,
2002) on the coverage of the English grammar). The grammars (to
date of English, French, German, Japanese,1 Norwegian, and Urdu) are
written in the framework of Lexical Functional Grammar (lfg) (Ka-
plan and Bresnan, 1982; Dalrymple, 2001), and they are constructed
using a common engineering and high-speed processing platform for
lfg grammars: xle (Maxwell and Kaplan, 1993).

In keeping with standard lfg practice, these grammars assign two
levels of syntactic representation to the sentences of a language: a sur-
face phrase structure tree (called a constituent structure or c-structure)
and an underlying matrix of features and values (the functional struc-

ture or f-structure). The c-structure records the order of words in a
sentence and their hierarchical grouping into phrases. The f-structure
encodes the grammatical functions, syntactic features, and predicate-
argument (dependency) relations conveyed by the sentence. F-struc-
tures are meant to encode a language-independent level of syntactic
analysis, allowing for crosslinguistic parallelism at this level of ab-
straction. For example, while the analysis of the English, French, and
German versions of a sentence like (1) will necessarily differ at the c-
structural level (different word orders, different numbers of auxiliaries),
at the f-structure level all the grammars produce something like the de-
pendency structure in Figure 1, in which the main predicate is the verb
with one subject argument. The verb is modified by an adjunct at the
top level of the f-structure, which also includes information about the
clause type (declarative). The tense and aspect information is collected
under the feature tns-asp (Butt et al., 1996). All this information
will be common to the f-structures produced for English, French and
German. However, the language-particular dependencies between tense
inflection, auxiliaries, and verbs are not encoded at f-structure.

(1) a. Tomorrow the letter will have arrived.

b. Demain la lettre sera arrivée. (French)

tomorrow the letter will-be arrived

1 A Korean grammar is currently being ported from the Japanese grammar to
determine how quickly a deep grammar can be developed when bootstrapped from
the grammar of a typologically similar language (Kim et al., 2003). Grammars for
Arabic, Chinese, Malagasy, Turkish, and Welsh are just being started.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.2

The Feature Space in Parallel Grammar Writing 3

c. Morgen wird der Brief angekommen sein. (German)

tomorrow will the letter arrived be

"Morgen wird der Brief angekommen sein."

’an#kommen<[41:Brief]>’PRED

’morgen’PRED
tempADV−TYPE0

ADJUNCT

’Brief’PRED

countCOMMONNSEM

commonGRAINNTYPE

’die’PRED
defDET−TYPE

DETSPEC

CASE nom, GEND masc, INFL strong−det, NUM sg, PERS 341

SUBJ

FUT + _, PERF + _ASPECT

MOOD indicative, TENSE present _
TNS−ASP

[0:morgen]TOPIC
CLAUSE−TYPE declarative, STMT−TYPE declarative, VTYPE main21

Figure 1. F-structure for (1c)

It is important to keep in mind that lfg f-structures are syntactic levels
of representation, i.e., they are not intended as a level of semantic or
knowledge representation. As such, different languages are expected
to at times have different f-structure analyses for sentence with similar
meanings (see (Butt et al., 2002) for some examples).2 The idea behind
parallel grammar writing based on f-structure analysis is to use similar
analyses for all languages in which that analysis can be linguistically
justified.

In this paper, we discuss some of the technical and organizational
means that have been developed in the ParGram project to establish
and enforce cross-grammar standards. Section 2 addresses the definition
and comparison of allowable features and their proper values. Section 3
discusses the systematic use of templates in the grammar description
language as a way of making generalizations explicit and transparent
across grammars. Section 4 provides some discussion and a conclusion.

2 That is, f-structures are meant to encode underlying structural similarity, not
crosslinguistic synonymy, since synonymy is a concept rooted in semantics. Of course,
the same underlying syntactic structure (f-structure in LFG) should generally cor-
respond to synonymous sentences crosslinguistically; however, it cannot exclusively
determine the set of all sentences that will be synonymous. In other words, we would
not expect all synonymous sentences to have exactly the same syntax.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.3

4 King, Forst, Kuhn, and Butt

2. Defining the Feature Space

In this section, we discuss the feature space in the lfg ParGram gram-
mars and how it is defined and regulated.

2.1. The Status of Feature Appropriateness Conditions

One way of ensuring parallelism at f-structure is to define a crosslin-
guistically relevant feature space in advance. The idea of theory-driven
type/sort definitions for the feature structure representations as used
in Head-driven Phrase Structure Grammar (hpsg; (Pollard and Sag,
1994)), for example, would appear to be ideal for such a purpose. The
space of valid representations is restricted by the use of typed values for
each feature, where the type of a feature-structure object defines ex-
actly what embedded features are appropriate. Very elaborate type hier-
archies have been proposed (see (Copestake, 2002) for implementation
and documentation of typed feature structure grammars).

The grounding of the type hierarchy in the theoretical framework
would seem to provide ideal support for a multilingual grammar writing
effort (Bender et al., 2002). However, for use in broad-coverage gram-
mars, the central role played by feature appropriateness conditions in
hpsg theory can also pose problems. As the discussions in the hpsg

community show, even quite fundamental configurations in the feature
geometry have been subject to dispute and revision over the years.
An example for such a discussion is the question whether or not the
arg-st feature should be embedded under head so it is percolated
from a word to its phrasal projections; compare e.g., (Przepiórkowski,
2001). The consideration of additional languages or phenomena may
lead to insights that justify, or even require, potentially fundamental
revisions to the feature space. This can pose considerable problems for
a continuing grammar development effort. Moreover, it is not entirely
clear whether there is (or should be) a crosslinguistically uniform type
hierarchy, although this issue is being tested and explored in the Matrix
project (Bender et al., 2002; Flickinger and Bender, 2003).

The methodology for ensuring parallelism and consistency in the
ParGram project relies on checking feature appropriateness in a similar
way to hpsg (section 2.3); however, the conditions are established in a
less theory-driven manner. From its inception, lfg linguistic theory has
chosen not to enforce feature appropriateness conditions per se. Instead,
these conditions are viewed as a means of expressing generalisations,
and as an engineering-level construct they are used for the purpose
of consistency-checking. This encourages an explorative comparison
of different possible representations, something which is particularly

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.4

The Feature Space in Parallel Grammar Writing 5

useful for phenomena not discussed in the theoretical literature. The
resulting feature geometry is typically “leaner” than an hpsg feature
geometry, which goes along with its lesser theoretical status and makes
it less prone to major revision.

Related to this, a crucial technical difference between feature decla-
rations in the ParGram project and the effect of feature appropriateness
conditions in hpsg lies in their status with respect to the specification
of the actual grammatical constraints: the lfg feature declarations act
only as filters, which check whether the feature usage in the grammar
conforms to conventions. Features that would be appropriate for a par-
ticular feature structure, but which are not explicitly mentioned in any
of the constraints relevant for a given analysis will not show up in the
f-structure representation. This is because of the lfg assumption that
the f-structure for a sentence is defined as the minimal model which
satisfies the grammatical constraints. In hpsg, on the other hand, the
feature appropriateness conditions associated with types in an inheri-
tence hierarchy interact with the hpsg assumption that the described
objects are totally well-typed, sort resolved feature structures. This
means that if, according to the type hierarchy, all subtypes of some type
t for which a feature f is defined also bear feature g, feature g will be
introduced “automatically” if some grammatical constraint mentions
feature f on a structure of type t. This can, of course, be exploited to
state linguistic generalizations in a very compact way, but in the context
of explorative grammar writing it can occasionally lead to unintended
effects and may cause the grammar writer to spend time defining work-
arounds in the type hierarchy. This is avoided in the approach described
here. In the remainder of this section, we describe two tools used to
ensure parallelism in the feature space: feature declarations and the
feature table.

2.2. Feature Declarations

While c-structure analyses are subject to language particular variation
by definition, the idea behind the f-structures is that they reflect a more
language-independent analysis. In order to maintain parallel grammar
development, it is therefore vital to have identical features playing
identical roles in all of the grammars.

For some features, the discussions and decisions to be made in a
multilingual context are relatively straightforward. For example, the
fact that there should be a case feature universally is generally undis-
puted, as is the idea that most languages code tense/mood/aspect and
definiteness in some way. However, the precise values of such features
continue to be disputed in linguistic theory and are thus also subject to

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.5

6 King, Forst, Kuhn, and Butt

debate within ParGram. For example, much discussion went into the
definition of the tense/aspect features: deciding which attributes and
values to use meant engaging in a deep discussion of the underlying
theoretical treatment of tense/aspect.

Case provides another type of example. While there is general agree-
ment that languages encode core values of nom(inative), dat(ive), and
acc(usative) in some form or another, one could question whether a
language like English does indeed need to encode case (e.g., (Hudson,
1995)). At present, the English ParGram grammar encodes case, but
this is mainly to ensure representational parallelism with the other
languages in the project.

At an even more basic level, issues arise as to whether the names of
features should be spelled the English way or, for example, the German
way (e.g., acc(usative) vs. akk(usativ)). While these latter sorts of
questions seem relatively low-level, the core of language individual anal-
yses does depend on the precise declaration and space of the features.
When viewed from this perspective, questions at this level do not seem
so unimportant any more.

2.2.1. The Syntax of Feature Declarations

In feature declarations, two basic types of feature values are distin-
guished: atomic (or constant) features values and complex values, which
are sub-f-structures.3 By convention, atomic feature values are always
lower-cased, whereas feature names are always upper-cased. This has
the effect of rendering the representations and the grammar code much
more transparent than is the case with the “classic” lfg convention of
using upper-case for all features and values. For atomic features, the
feature declaration specifies that the value of a feature feat (denoted
by feat:→; the right-arrow introduces the definition of the possible

values of the feature to its left) has to be a member of a set of atomic
values:

(2) feat:→ ∈ { value1 value2 . . . valuen}.

3 A further type of feature values are closed-set values, as argued for in (Dal-
rymple and Kaplan, 2000). An indeterminate pronoun may, for example, have the
closed set { nom, acc } as the value of its case feature. (Under a closed-set value
analysis, constraints on case may check for membership of nom (or acc) in the set,
so the indeterminate pronoun is indeed compatible with both cases.) The feature
declaration for a closed-set-typed case feature involves using the set subsumption
operator ≪:
case: → ≪ { nom gen dat acc }.
Set valued features are used to encode psem in English (section 2.2.2).

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.6

The Feature Space in Parallel Grammar Writing 7

For complex features, the declaration specifies the features that the em-
bedded feature structure may contain, using the subsumption operator
≪:

(3) featA:→ ≪ [featB1 . . . featBn].

Consider the tns-asp feature and the features it calls in the feature
declaration in (4). tns-asp itself takes an embedded feature structure
as its value, with four possible features. (Note that the complex feature
structure may consist of a subset of these features.) The feature mood

has an atomic value, likewise the remaining three features.

(4) tns-asp: → ≪ [mood perf prog tense].
mood: → ∈ { imperative indicative subjunctive }.
perf:→ ∈ { + − }.
prog: → ∈ { + − }.
tense: → ∈ { fut null past pres }.

Even from a cursory examination of the features in (4), it is easy to
tell that tense/mood/aspect information is grouped together under the
tns-asp feature (instead of having the individual features directly in
the verb’s f-structure). In addition, we can see that the grammars do
not make use of composite tense/aspect values such as past perfect,
pluperfect, or future perfect. Early on in the ParGram project, this type
of composite feature value for tense/aspect was attempted for the Ger-
man, English, and French grammars. However, not only did the cost of
determining the right value turn out to be too great (since these tenses
are often encoded as periphrastic constructions, a complex system of
interdependencies needs to be checked), but it was difficult to establish
a coherent crosslinguistic feature space. It was therefore decided to
fall back on a more atomic encoding of tense/aspect, in which atomic
features are simply registered under the tns-asp feature. That is, the
English auxiliary will contributes the feature fut, the English auxiliary
have contributes the perf + ,4 etc. The more intricate problem of a
precise and crosslinguistically valid semantic analysis of tense/aspect
is left to a separate semantic component, which can base its analysis
on the information collected under the tns-asp feature.

4 The use of the underscore in the value ‘+ ’ indicates its status as an instantiated
symbol. This means that it is resource-sensitive in that it can be introduced only once
through a defining feature equation. In other places, only constraining equations can
be used to check for the feature value. The most well-known instantiated symbols are
the semantic forms used as values of the pred feature. Here, instantiation excludes
a duplication of identical material in various clause positions. See also (Dalrymple,
2001, 107).

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.7

8 King, Forst, Kuhn, and Butt

When the grammar is loaded, the feature declaration is checked
against the compiled grammar rules. If any undefined features are
found or if any undefined values of declared features are found, xle

returns an error message indicating the offending feature and where it
appeared. The grammar cannot be loaded until the feature declaration
violation is fixed.5 For example, if the feature declaration allows for
adv-degree positive and comparative but the grammar also has
adv-degree superlative, as might occur when the grammar writer
is adding superlative adverbs to the grammar, then xle provides a
message as in (5).

(5) Feature declaration violation near line 43, column 23

in file /pg/eng/standard/english-templates.lfg:

adv-degree cannot be equal to superlative

Thus, xle forces compliance to the feature declaration by not loading
a grammar using features that conflict with or are missing from those
in the declaration.

2.2.2. Multiple Feature Declarations

xle allows the grammar to call multiple feature declarations. These
declarations are given a priority order and can modify entries posited
in previous feature declarations. The ability to include multiple feature
declarations can be used in a multilingual context to create a common
feature declaration which can then be specialized for particular lan-
guages. A “universal” or “common” feature declaration can be created
for all languages. This common feature declaration is then invoked by
all of the grammars. If a specific language needs additional features
or feature values which are not in the common feature table, then
these can be specified in the language particular feature table. This
language-specific table is then given higher priority than the common
one, as in (6a), and can then be further specified for special versions of
that language’s grammar, as in (6b).

(6) a. features: common standard-french.

b. features: common standard-english eureka-english.

5 In order to check for feature declaration violations in the lexicon, it is necessary
to load the generator for the grammar since only in generation is the entire lexicon
indexed. As with feature violations in the grammar, xle will indicate the feature in
question and where it was found; once the violations are fixed, the generator can be
loaded.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.8

The Feature Space in Parallel Grammar Writing 9

With this ordering, the standard-french feature declaration takes
priority over the common one. Special edit operators are used to ma-
nipulate the features (see (Kaplan and Newman, 1997) for how edit
operators can be used with multiple lexicons in a similar fashion).

There are three edit operators (+ & !). In addition, a feature can
appear without an operator. We demonstrate these operators with an
expository example first and then discuss examples from the ParGram
grammars.

Consider a common feature declaration as in (7).

(7) common features

case: → ∈ { nom acc dat gen }.
num: → ∈ { sg pl }.
gend: → ∈ { masc fem neut }.

If we want to add a new feature that is not mentioned in common,
then it appears without an operator. This is shown in (8) for pers and
results in the effective feature declaration in (9).

(8) language1 features

pers: → ∈ { 1 2 3 }.

(9) effective-language1 features

case: → ∈ { nom acc dat gen }.
num: → ∈ { sg pl }.
gend: → ∈ { masc fem neut }.
pers: → ∈ { 1 2 3 }.

If we want to add a new value to an existing feature, then the +
operator is used. This is shown in (10) to add the value erg(ative) to
the feature case (as needs to be done for the Urdu grammar). Note
that it is possible to add multiple values to a feature in this way. (10)
results in the effective feature declaration in (11).

(10) language1 features

+case: → ∈ { erg }.

(11) effective-language1 features

case: → ∈ { nom acc dat gen erg }.
num: → ∈ { sg pl }.
gend: → ∈ { masc fem neut }.

If we want to restrict the set of values of a feature with respect to the
common set of values, the & operator is used. The & operator denotes

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.9

10 King, Forst, Kuhn, and Butt

intersection and the list of values appearing in the language-specific
feature declaration shows the ones that are to be kept from the original
list. So, if we want to remove the value neut from the feature gend,
then we would list only the values masc fem. This is shown in (12) and
results in the effective feature declaration in (13).

(12) language1 features

&num: → ∈ { masc fem }.

(13) effective-language1 features

case: → ∈ { nom acc dat gen }.
num: → ∈ { sg pl }.
gend: → ∈ { masc fem }.

Finally, it is possible to completely replace a feature with a new set
of values or even a new type of values. As discussed below, other than
in a deletion context, this is strongly discouraged in a parallel grammar
setting and is used only as a development tool. If we wanted to replace
the feature gend with one that took complex instead of atomic features,
we could do this as in (14) (we also add the new masc and fem features
for completeness; since these are new features, they do not need an edit
operator). This results in the effective feature declaration in (15).

(14) language1 features

!gend: → ≪ [masc fem].
masc: → ∈ { + − }.
fem: → ∈ { + − }.

(15) effective-language1 features

case: → ∈ { nom acc dat gen }.
num: → ∈ { sg pl }.
gend: → ≪ [masc fem].
masc: → ∈ { + − }.
fem: → ∈ { + − }.

One interesting side effect of the ! operator is that it can be used to
effectively remove a feature from the common set by setting the value
of the new feature to the empty set. For example, to remove num

altogether (some languages indeed have no number specification), the
language1 feature declaration would be as in (16), with the effective
feature declaration in (17).

(16) language1 features

!num: { }.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.10

The Feature Space in Parallel Grammar Writing 11

(17) effective-language1 features

case: → ∈ { nom acc dat gen }.
gend: → ∈ { masc fem neut }.

Thus, if we look at the common feature declaration repeated in
(18a) and the language1 feature declaration in (18b), the effective
feature declaration for language1 is as in (18c).

(18) a. common features

case: → ∈ { nom acc dat gen }.
num: → ∈ { sg pl }.
gend: → ∈ { masc fem neut }.

b. language1 features

pers: → ∈ { 1 2 3 }.
+case: → ∈ { erg }.
&gend: → ∈ { masc fem }.
!num: → { }.

c. effective-language1 features

case: → ∈ { nom acc dat gen erg }.
gend: → ∈ { masc fem }.
pers: → ∈ { 1 2 3 }.

The above example was expository in nature, but used a set of fea-
tures and changes that could be possible in a parallel grammar setting.
We now discuss some actual uses of the edit operators in the ParGram
project grammars.

Consider the English grammar. English has an impoverished set
of case features. However, the set of possible values for case in the
common feature declaration is large, as seen in (19a), since these values
are needed for languages like Urdu and are typologically quite common.
As such, the & operator is used to restrict this set, as in (19b). A similar
situation is found for mood, as seen in (20).

(19) a. common features:

case: → ∈ { acc dat erg gen inst loc nom obl }.

b. standard-english features:

&case: → ∈ { obl gen nom }.

(20) a. common features:

mood: → ∈ { imperative indicative subjunctive

successive }.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.11

12 King, Forst, Kuhn, and Butt

b. standard-english features:

&mood: → ∈ { imperative indicative subjunctive }.

Some complex features are not found in English and hence must be
removed from the set of common features. This is the case for gend

which encodes grammaticalized gender, as in (21).6

(21) a. common features:

gend: → ∈ { fem masc neut }.

b. standard-english features:

!gend: → ∈ { }.

In general, the strategy within ParGram has been to identify the
features used by indvidual grammars and discuss their functionality
and what they are intended to denote. If the feature committee finds
that the features introduced by the individual grammar are there for
sound linguistic and/or implementational reasons, then these features
are ratified and may enter the common feature space. In practice,
therefore, values should rarely be added to the standard versions of the
languages because these values should have occurred in the common
feature declaration.

As a temporary measure, however, individual grammars will add
values until the addition of the value is approved by the feature com-
mittee (adding values is more common in specialized grammars; see
(30) and (31) below). An example of such an addition is a value for
the time feature of day-part, as shown in (22), to encode time ex-
pressions such as evening and morning for a grammar which has to pay
particular attention to date-time expressions (for example, this could be
useful for scenarios in which appointments are to be arranged; this was
the domain of the machine translation project Verbmobil (Wahlster,
2000)).

(22) a. common features:

time: → ∈ { date day hour minute month season second

week year }.

b. standard-english features:

+time: → ∈ { day-part }.

Features are very rarely redefined, since the redefinition of features
is generally an indication that something is wrong with the analysis in

6 English does have values for gend-sem which reflects semantic gender and
occurs with pronouns and proper names.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.12

The Feature Space in Parallel Grammar Writing 13

that it is not shared accross the grammars. However, it can be useful
as a development tool: for example, in the current English grammar,
the feature psem is replaced, not because its values are different, but
because psem is a set-valued feature in English instead of having atomic
values like in the other languages (compare footnote 3). The English
grammar was chosen to experiment with having psem be a set value
feature because many prepositions are ambiguous as to their class (e.g.,
both directional and locative).

(23) a. common features:

psem:→∈ { ag ben compar dir inst loc manner num part

poss purp temp }.

b. standard-english features:

!psem: → ≪ { compar dir loc manner num part purp

temp }.

Finally, a number of specialized features appear in the English gram-
mar. Many of these are form features and hence their values are
language-specific. Examples from the English feature declaration are
shown in (24) for prt-form (particles in particle verbs) and comp-

form (complementizers for subcategorized subordinate clauses).

(24) a. standard-english features:

prt-form: → ∈ { back by down in off on out over

up aside away about around open round

together through along }.
comp-form: → ∈ { for if null that whether }.

The organization of the feature space in this way thus has the major
advantage that high-level similarity across languages can be registered
in a space of common features. Individual languages can then choose
to manipulate details of that feature space for linguistically justified
reasons and can further define language particular information, such
as the precise form of the complementizer, in a way that will not to
interfere or damage the generally established feature space. We see this
flexible and yet transparent mode of organization as a major advantage
over the rather rigid architecture prescribed by inheritance hierarchies.

A look at German, a language whose feature space is by no means
identical to that of English, serves to further illustrate the definitional
ease of the underlying formalism. Although German differs from En-
glish, in the German grammar, the common feature declaration is
modified in a very similar way to the methodology employed by the
English grammar. The set of possible values of case, for example, is
also restricted by means of the & operator, as is shown in (25):

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.13

14 King, Forst, Kuhn, and Butt

(25) standard-german features:

&case: → ∈ { acc dat gen nom }.

Features that are not grammaticalized in German, such as prog

(progressive) in (26), are removed from the feature declaration by over-
writing the common declaration by the empty set.

(26) standard-german features:

!prog: → ∈ { }.

Just as is the case for the English grammar, the German grammar
is also subject to continual upgrades and revisions. One of the current
phenomena under revision is the treatment of articles (spec) in Ger-
man. The standard within ParGram allows for only a complex det

feature within specifiers; however, it may also make sense to allow for
a complex interrogative (int) feature. This is currently being experi-
mented with in the German grammar and the int value is therefore
added in as a temporary measure (subject to subsequent approval by
the feature committee). Thus, the organization of the feature space
allows for a flexible experimentation with new analyses: there are no
immediate deep architectural consequences if changes in the feature
space are made, as would be the case with an inheritance hierarchy.

(27) standard-german features:

+spec: → ≪ { int }.

Finally, the German grammar, just like the English grammar, uses a
small number of specialized features such as precoord-form, which is
exemplified in (28). Since it is a form feature, its values are language-
specific.7

(28) standard-german features:

precoord-form: → ∈ { entweder nicht ` nur sowohl

weder }.

The xle system also allows for grammar adaptation whereby a stan-
dard grammar developed for a language can be modified to a specific
corpus (Kaplan et al., 2002). Among the possible adaptations is the
capability to allow controlled changes of the feature declaration. In
particular, the specialized grammar can use the standard features as a
default, while overriding only those features which have changed in the

7 The back quote in nicht` nur is the escape character used to indicate a space
in a multiword expression.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.14

The Feature Space in Parallel Grammar Writing 15

specialized version. This way, any changes made to the feature declara-
tion of the standard grammar are automatically incorporated into the
specialized grammar. This is done in the grammar configuration file
where the feature declaration is stated, as in (29), which gives priority
to the eureka feature declaration while using the standard one as
a default. As before, the common feature declaration has the lowest
priority.

(29) features: common standard-english eureka-english.

The specialized feature table then only needs to contain newly in-
troduced features, e.g., field in (30a) and eureka-type (30b), or
features whose values have changed, e.g., nsem and number-type, in
(31).

(30) a. field: → ∈ { cause item problem solution }.

b. eureka-type: → ∈ { adjust-num cause-num dc-num

fault-num part-name part-num pl-num

qual-num repair-num tag-num xerox-acron }

(31) +nsem: → ≪ [eureka-type].
+number-type: → ∈ { hex }.

Thus, the same tools that can be used to specialize a common set
of features to a specific language can be used to create a grammar
for a specialized corpus from a core or standard grammar.8 These
tools allow the grammar writer to maintain the core grammar and
yet create a specialized version with the minimal number of changes.
As such, any improvements to the core grammar will be automatically
incorporated into the specialized one. In addition, the grammar writer
can create multiple specialized grammars without worrying about cross-
specialization interference in which a change intended for one corpus
adversely affects the coverage of a different one.

2.3. The Feature Committee and the Feature Table

Within ParGram, the definition of the multilingually relevant feature
space is established via twice-yearly meetings among the grammar writ-
ers. Here, new developments in the individual grammars are checked
and discussed. New features introduced for the grammar of a particular
language are skeptically reviewed and are only sanctioned if they can

8 See (Kaplan et al., 2002) for ways in which the rules themselves can be shared
and modified for specialized grammars.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.15

16 King, Forst, Kuhn, and Butt

Table I. Sample feat-table

Feature english german japanese

case acc gen nom acc dat gen nom acc dat gen nom

inf-form bare to zu

tns-asp mood perf fut mood pass-sem mood prog

prog tense perf tense tense

vtype copular main modal copular main modal copular main

be shown to have a universal application or if it becomes clear that the
individual grammar could not have done without this feature. Every
effort is made to keep the feature-space as small as possible and to
assimilate new analyses within the existing feature-space. To facilitate
this, the feature declarations are combined into a feature table (feat-

table) which has a column for each language and the features as rows;
the cells are the values of the features for a particular language. A
sample feature table is shown in Table I.9

The feat-table can be used at a fairly high level to determine
which grammars cover which constructions and what types of analyses
are applied. The feat-table can also be used to determine trivial dif-
ferences across the grammars, like the spelling of case values mentioned
above (e.g., acc vs. akk).

One typical situation in which the feat-table proved useful is
exemplified by the treatment of noun types. The precise classification of
different types of nouns cannot be imported from theoretical linguistics
directly into grammar development (unlike, for example, analyses of
case or tense/aspect). Rather, as the grammars grew and had to parse
different kinds of nouns (e.g., as encountered in the Wall Street Jour-
nal), individual grammar writers introduced more and more features
to constrain the number and types of different analyses. These were
all duly recorded in the feat-table, enabling the grammar writers to
easily compare their analyses and naming conventions and then agree
on a standardized approach across the grammars. In particular, a very
flat structure had arisen whereby most of the features were immediate
attributes of the noun’s predicate. Most of these were then rearranged
under an ntype feature and further subdivided into syntactic (nsyn)
and semantic (nsem) features which in turn could have complex values.

9 A Perl script is used to create the feature table automatically from the feature
declarations of the individual grammars.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.16

The Feature Space in Parallel Grammar Writing 17

The syntactic values include information as to whether the noun is,
for example, common, pronoun, or proper; the semantic values include
information as to what type of proper noun it is (e.g. location, name).
This more hierarchical structure allows the grammar writer to envision
more easily the possible types of nouns in the grammar and to make
reference to noun classes with fewer disjunctions.

In summary, once a language particular feature f (or similarly, a
language particular value for a common feature) has been proposed,
the feature committee can then examine the nonconforming specifica-
tions and decide whether (i) the feature f is actually something that
is crosslinguistically relevant, but has not come up yet as a part of the
analyses in any of the other grammars. In this case, f should be added
to the common feature specification unless the feature is typologically
very rare. On the other hand, (ii) f may be the result of an aberrant
analysis on the part of the grammar writer and therefore should be
disallowed. Finally, (iii) f may reflect a language particular or very rare
characteristic and should therefore be included as part of the language-
specific feature declaration. In particular, it is worth examining in detail
anywhere that a + or ! operator was used to add a feature value (+) or
to completely rewrite a feature (!). Features that appear in a particular
language without an operator are interesting in that they may indicate
features necessary for some phenomenon not yet covered in the other
grammars. As such, these features may need to be added to the common
feature declaration. Thus, the ability to invoke multiple feature declara-
tions in an override fashion allows for more direct multilingual grammar
development and highlights differences among the feature spaces of the
languages.

3. Capturing Generalizations through Templates

The discussion in the previous section focused on the use of feature
representations according to an agreed-upon definition of the feature
space. This itself does not necessarily have implications for the general-
ity in which descriptions of or constraints on these representations are
expressed in the grammars. It would be possible (although difficult) to
write a grammar that does not capture any linguistic generalizations,
but conforms to the feature declaration in each of its ad hoc rule state-
ments. This section addresses what devices the lfg ParGram project
employs to achieve and exploit parallelism across grammars at the level
of descriptions.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.17

18 King, Forst, Kuhn, and Butt

3.1. Benefits of sharing constraints across grammars

Much of the grammar development work goes into the identification of
suitable generalizations, since they are crucial for making the grammar
readable, extensible, and maintainable. Although parallelism across
multilingual grammars at the description level is not as indispensable
as the representation-level parallelism (which is sufficient for appli-
cations like machine translation), it is possible to avoid a significant
amount of duplicate work by using a common specification of language-
independent principles across grammars. Ultimately, a systematically
organized grammatical description is also the best way to guarantee
consistent representations.

An obvious example for a language-independent subsystem required
for each of the grammars is the organization of the lexicon, particularly
with regard to subcategorization. For example, verbs can universally be
classified in terms of notions such as intransitive, transitive, or ditran-
sitive. While languages may differ in terms of case marking or other
requirements, there is a level at which generalizations in terms of sub-
categorization classes are very useful. When a new grammar is added
to the project, the grammar writer can immediately expect to distin-
guish between intransitive, transitive, and ditransitive verbs. Given a
universally defined lexical rule which generates passives from actives,
the grammar writer may also expect to find passives in the language.
The same holds for templates which define subject-verb agreement.

As was the case for the discussion of the feature space definition in
section 2, one possible view to take with respect to the organization of
the lexicon is that the linguistic theory should enforce a highly system-
atic structure. In the lfg ParGram project, it is an option to express
high-level linguistic generalizations explicitly and share them across
the grammars of multiple languages, but the formalism and grammar-
writing conventions do not enforce such a policy. In the remainder of
this section we use the organization of subcategorization in the lexicon
as an example to argue that the flexible depth of systematicity is justi-
fied and advantageous for broad-coverage grammar development; in the
subsequent sections we will show how cross-linguistic generalizations
can be expressed and enforced across grammars.

In hpsg, the feature structure entities representing (certain aspects
of) words and phrases are organized in an inheritance hierarchy of
types/sorts. This makes it possible for general properties holding for a
large class of items to be specified once at a high level of abstraction
and for the specific instantiations to inherit these properties. (Davis,
2001) discusses in detail how linguistic generalizations over classes of
lexical items can be expressed in an inheritance hierarchy; specifically,

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.18

The Feature Space in Parallel Grammar Writing 19

he aims to derive the grounding of the subcategorization behavior
of lexical items in their lexical semantics. This can be achieved to a
large degree by assuming a hierarchical organization of lexico-semantic
relations and enforcing that the specialization hierarchy of these re-
lations is reflected homomorphically in the organization of the verbs
and prepositions realizing them. It has to be admitted however (Davis,
2001, sec. 5.3) that there cannot exist a perfect homomorphism, since
there are near-synonymous verbs with distinct subcategorization: await

vs. wait (for), seek vs. look (for), etc. To account for such facts, two
separate hierarchies for syntactic subcategorization and for semantic
relations have to be assumed that are interrelated in a fairly intricate
way using the “junk slot” technique.

In the context of broad-coverage grammars, a general derivation of
syntactic subcategorization behavior from lexico-semantic properties is
impractical because of the lack of sufficiently large lexical resources
that could provide the necessary detail. On the other hand, it is rela-
tively straightforward to obtain near-exhaustive lists of the surface-level
subcategorization behavior of lexical items, using corpus-linguistic tech-
niques (see e.g., (Eckle and Heid, 1996; Kuhn et al., 1998)). So, it is
possible to provide the subcategorization information that is crucial
for broad-coverage parsing. In a framework that is flexible with respect
to the expression of higher-level generalizations, nothing enforces an
additional cross-classification of lexical items according to their (un-
known) semantic class. So an ad hoc solution for this problem can be
avoided. Generalizations for which sufficient information is available
can nevertheless be expressed.

3.2. The Syntax of Templates

Templates are used in the xle implementation of lfg to allow for the
grouping of equations in lexicons and in rules. From a linguistic per-
spective, these groupings allow the grammar writer to capture linguistic
generalizations. From an engineering perspective, they allow for much
improved grammar maintenance.

The template definitions appear in their own section of the grammar.
Their basic format is:

template name(parameters) = equations.

Templates are called via:

@(template name parameters)

The template will then expand to the relevant equations with the values
provided by the parameters in the call.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.19

20 King, Forst, Kuhn, and Butt

The template can have any number of parameters, including none.
These values will be passed in when the template is called. The equa-
tions consist of any equations that would be valid in a lexical entry or
rule. An example of a template with no parameters is shown in (32a)
and a call to the template is shown in (32b). This template simply
assigns the value + to the feature passive.

(32) a. passive =
(↑ passive)=+

b. @(passive).

A simple example of a template with a parameter is shown in (33a)
with a sample call in (33b); the expansion of the call in (33b) is shown
in (33c). This template assigns the value passed in by the parameter to
the feature tns-asp tense and assigns the value indicative to the
feature mood.

(33) a. tense-ind(tns) =
(↑ tns-asp tense) = tns

(↑ tns-asp mood) = indicative.

b. @(tense-ind past)

c. (↑ tns-asp tense) = past

(↑ tns-asp mood) = indicative

Templates can call other templates and can pass the parameter
values that they receive on to these other templates. For example, in
the English grammar the tense-ind template that was shown in (33a)
in fact calls two other templates, as shown in (34a) with the other
templates in (34b) and (34c) (the templates in (34b) and (34c) are
templates shared across the grammars; see section 3.3). Note that this
does not affect the call shown in (33b).

(34) a. tense-ind(tns) =
@(tense tns)
@(mood indicative).

b. tense(tns) =
(↑ tns-asp tense) = tns.

c. mood(md) =
(↑ tns-asp mood) = md.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.20

The Feature Space in Parallel Grammar Writing 21

In addition to passing values of features as parameters of the tem-
plates, it is also possible to pass in path names as parameters. This
is extremely useful for templates which are called in the rules. An
example of this is the template that creates the features associated
with null pronouns (e.g., in pro-drop and in infinitives with arbitrary
pronominal subjects). This template is shown in (35). A sample call
within a verb phrase (VPinf) and the resulting expansion are in (36).10

(35) null-pronoun(path) =
@(pred desig path pro)
@(pron-type desig path null)
@(nsyn desig path pronoun).

(36) a. VPinf: @(null-pronoun (↑ subj))

b. VPinf: (↑ subj pred)=’pro’
(↑ subj pron-type) = null

(↑ subj ntype nsyn) = pronoun

Just as the grammars share a common feature declaration, they also
share a common set of templates. Each grammar then expands on these
templates as needed to capture language particular generalizations and
patterns. The types of templates that occur in the common template
space are discussed in the next section.

3.3. Shared Templates

As mentioned before, the lfg grammar development philosophy allows
the grammar writer of an individual language a large degree of free-
dom as to whether or not a highly structured subsystem of recursive
template calls is used in a specific situation. This has the advantage
that less studied linguistic phenomena can be added to the grammar
without a major modeling effort. Also, ill-understood exceptions to
a given generalization can be included in a grammar without having
to change the system of representations itself, something which would
be required in a strictly inheritance-based framework. At the same
time, this large degree of liberty requires a certain discipline in the
context of a multi-site multi-language grammar development project.
The code reviewing instance of the feature committee has proven to be
one helpful way of controlling the freedom offered by the lfg formalism.

There are approximately 270 templates that are currently shared by
the ParGram grammars. Most of these are concerned with assigning

10 The intermediate xyz desig templates called in (35) will be discussed below.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.21

22 King, Forst, Kuhn, and Butt

values to features and maintaining the correct feature geometry for
features like tns-asp and ntype which have complex features as their
values. There are also features defined for common annotations in the
rules. Finally, there are some templates that define several notational
patterns that are useful to have in template form. We discuss these
types more in this section.

First consider the feature templates. For each feature in the feature
declaration, there are a set of templates that can be called to assign
it. The basic version takes two parameters: a path and a value. The
path is the functional path to the feature and the value is the value
assigned to the feature. Most of the time, the path will be ↑. As such,
an additional template is defined which already includes the path in its
call. This is the version that is used most frequently by the grammars.
However, the other version is available for rules where other paths are
necessary. The two templates for clause-type are shown in (37).

(37) a. clause-type(val) =
@(clause-type desig ↑ val).

b. clause-type desig(path val) =
(path clause-type) = val.

For features which always appear as part of a complex feature, the
common templates include the information about the complex feature.
This makes it easier for the grammar writer to assign the correct feature
geometry. This is shown in (38) for tense which always appears under
tns-asp. Note that tns-asp desig is called by all of the templates for
the features that appear under tns-asp, e.g., mood, perf.

(38) a. tense(val) =
@(tns-asp tense val).

b. tns-asp(attr val) =
@(tns-asp desig ↑ attr val).

c. tns-asp desig(path attr val) =
(path tns-asp attr) = val.

Rule annotations assigning grammatical functions are also invoked
as templates. These help in maintenance (e.g., all the grammars should
spell obj-th, the grammatical function for secondary, thematic objects
similarly). In addition, they make the grammar code cleaner to read
since there is a simple template call instead of a potentially complex
equation. An example for the annotation of a subject is shown in (39).
It would be called in a rule as in (40a) if the annotation was intended

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.22

The Feature Space in Parallel Grammar Writing 23

to be as in (40b), the most common annotation for subjects in the
grammars.

(39) a. subj =
@(subj desig ↑ ↓).

b. subj desig(path1 path2) =
@(gf desig path1 subj path2).

c. gf desig(path1 gf path2) =
(path1 gf) = path2.

(40) a. S → NP: @(subj); VP.

b. S → NP: (↑ subj)=↓; VP.

Related to this, there are a few templates that define common relations
among grammatical functions, such as the subject control template
shown in (41).

(41) subj-subj-control =
(↑ subj)=(↑ xcomp subj).

Finally, there are a handful of notational templates. These are used
to assign default values, expand as if and if and only if operators, etc.
The default and if and only if templates are shown in (42a) and (42b).
(The { | } indicates disjunction,11 the ∼= stands for 6=. Negation (∼)
can also be applied to an entire equation or set of equations like p and
q in (42b).)

(42) a. default(feat val) =
{ feat

feat ∼= val

| feat = val }.

b. iff(p q) =
{ p q

| ∼ p ∼ q}.

11 The first disjunct in (42a) makes use of a so-called existential constraint: if feat

is for example instantiated to (↑ subj num), the use of just the feature path (without
a value assignment) means that in the respective f-structure under (↑ subj), there
has to exist a num feature with some value, introduced from some other source.
The full default template can be paraphrased as follows: “either feat has been
introduced independently with some value distinct from val, or else its value is
hereby defined as val.”

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.23

24 King, Forst, Kuhn, and Butt

The parameters for these templates can be extremely complex. To
assign a default value of singular to the subject’s number feature,
default can be called as in (43).

(43) @(default (↑ subj num) sg).

In addition, these templates can have template calls as their parame-
ters. These will be expanded out appropriately when the grammar is
compiled. For example, the grammar writer can use iff to assign an
OT mark (Frank et al., 2001) to disprefer specifiers on proper nouns as
in (44). (44) states that if the f-structure corresponding to the template
call has a specifier and the ntype of a proper noun, then the OT mark
SpecProper is invoked. (Note that square brackets [] are used to group
together sets of equations so that they can be interpreted correctly as
the first parameter of the template call.)

(44) @(iff [(↑ spec) (↑ ntype nsym)=c proper]
@(ot-mark SpecProper))

Thus, there are a number of templates that are shared among the
ParGram grammars. In a way similar to the common feature declara-
tion, these are used to help maintain parallelism among the grammars.
In addition, the use of templates helps with grammar maintenance in
that the templates capture generalizations and encode them in one
place in the grammar, namely in the template definition. This is par-
ticularly notable in the lexicon where the same set of equations is called
repeatedly, e.g., all transitive verbs call the same sets of equations. In
order to make a change to a class of lexical entries, it is only necessary
to change the internal expansion of the relevant template; no change
at all needs to be made in the lexicon itself.

3.4. Template Hierarchies

lfg does not assume a sort hierarchy as part of the linguistic theory.
However, means of abstraction like templates in the grammar specifica-
tion make it possible to organize the lexicon in the same general way,
following a specialization hierarchy where appropriate: more specific
templates can call more general templates as part of their definition.
The verbal subcategorization frame templates within the ParGram
grammars provide a good example.

The central contribution of a verb subcategorization frame is a spec-
ification of the verbal stem and the number and type of arguments this
verb subcategorizes for. The information about the stem is passed in as
a variable, as shown in (45a). However, it is usually the case that other

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.24

The Feature Space in Parallel Grammar Writing 25

restrictions also apply to verbs with that basic subcategorization frame.
These restrictions can be invoked by calling other templates, as in (45b)
which invokes templates that require a finite comp and that block
particles and sentential subjects. In turn, this template may be called
by other templates that further restrict it, as in (45c) which requires a
that complement and (45d) which requires a whether complement.

(45) a. v-subj-comp pred(stem) =
(↑pred)=’ stem<(↑subj)(↑comp)>’.

b. v-subj-comp-fin(stem) =
@(v-subj-comp pred stem)
@comp-fin @no-prt @no-cl-subj.

c. v-subj-comp-that(stem) =
@(v-subj-comp-fin stem)
@(comp-form that).

d. v-subj-comp-int(stem) =
@(v-subj-comp-fin stem)
@(comp-form whether).

The example in (45) results in a partial template hierarchy as in (46).

(46) v-subj-comp pred

v-subj-comp-fin . . .

v-subj-comp-that v-subj-comp-int

Similar dependencies among the templates can be found throughout
the template system, e.g., the nominal templates also form a loose
hierarchy. Thus, although theoretical lfg does not have a type hierar-
chy, the xle implementation of lfg allows for templates to be used to
capture many of the generalizations found in type hierarchies, but in
a more flexible manner. This is because no type hierarchy is defined a
priori, but it rather emerges as part of the structure of the grammar.
This means that changes to the “hierarchy” involve simple and perhaps
even incidental changes at the level of template calls—they do not have
possible major architectural consequences.12

12 It should be pointed out that there are, of course, ways of sidestepping a given
type hierarchy in hpsg, if grammar engineering makes it necessary; but it seems
generally easier to deal with “non-canonical phenomena” in a leaner and less theory-
loaded hierarchy of grammatical descriptions.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.25

26 King, Forst, Kuhn, and Butt

4. Conclusions

The ParGram project attempts to test lfg for its universality and
coverage and to see how far parallelism can be maintained across lan-
guages; previous ParGram work (and much theoretical analysis) has
largely confirmed the universality claims of lfg theory. The f-structures
produced by the grammars for similar constructions in each language
have the same major functions and features, with minor variations
across languages (e.g., the f-structures for French nouns have a gen-
der feature but not the English f-structures). This uniformity has the
computational advantage that the grammars can be used in similar
applications and that machine translation (Frank, 1999) can be sim-
plified. It also has the advantage that when new grammars (such as
Urdu or Japanese) are added to the project, they can be bootstrapped
relatively efficiently using the existing declared feature space and the
existing templates (see (Kim et al., 2003) on the more extreme case of
porting an entire grammar from one language to another).

The ParGram methodology of establishing consistency and paral-
lelism of representations relies on (i) a feature committee in which
extensions to the existing representations are critically reviewed on
linguistic and engineering grounds and (ii) technical tools for checking
adherence to a feature declaration for linguistic representations and
for encoding generalizations over descriptions. The resulting system of
checking feature appropriateness resembles the theory-driven typed fea-
ture structure signatures of hpsg; however, the feature appropriateness
conditions are not predominantly theory-driven, but are established
by best practice. In particular, the very flexible architecture allows
local changes to be implemented without compromising the overall
architecture of the system. This allows for a transparent integration of
on-going empirical and linguistic research into multilingual grammar
development. In particular, it takes into account the specific needs of
multi-site development, and seems to be more appropriate for broad-
coverage grammars in which representations often have to be defined
for phenomena not yet analyzed in the linguistic literature. A similar
approach is taken in the systematic structuring of the grammatical
descriptions: means of abstraction like templates can be used to im-
plement a hierarchical organization of linguistic generalizations where
appropriate. Such a structured grammatical subsystem can be used
across grammars in a multilingual context.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.26

The Feature Space in Parallel Grammar Writing 27

Acknowledgements

This paper is a significantly revised and expanded version of our paper
presented at ESSLLI 2003 in Vienna at the workshop on Ideas and
Strategies in Multilingual Grammar Development. We would like to
thank the participants for lively discussion and helpful suggestions and
two anonymous reviewers for their extensive comments.

References

Bender, E., D. Flickinger, and S. Oepen: 2002, ‘The Grammar Matrix: An Open-
source Starter-kit for the Rapid Development of Cross-linguistically Consistent
Broad-coverage Precision Grammars’. In: Proceedings of the Workshop on
Grammar Engineering and Evaluation. pp. 8–14. COLING 2002 workshop.

Butt, M., H. Dyvik, T. H. King, H. Masuichi, and C. Rohrer: 2002, ‘The Parallel
Grammar Project’. In: COLING 2002: Workshop on Grammar Engineering and
Evaluation. pp. 1–7.

Butt, M., T. H. King, M.-E. Niño, and F. Segond: 1999, A Grammar Writer’s
Cookbook. CSLI Publications.

Butt, M., M.-E. Niño, and F. Segond: 1996, ‘Multilingual Processing of Auxiliaries in
LFG’. In: D. Gibbon (ed.): Natural Language Processing and Speech Technology:
Results of the 3rd KONVENS Conference. pp. 111–122.

Copestake, A.: 2002, Implementing Typed Feature Structure Grammars. Stanford,
California: CSLI Publications.

Dalrymple, M.: 2001, Lexical Functional Grammar. New York: Academic Press.
Syntax and Semantics, volume 34.

Dalrymple, M. and R. M. Kaplan: 2000, ‘Feature Indeterminacy and Feature
Resolution’. Language 76(4), 759–798.

Davis, A. R.: 2001, Linking by Types in the Hierarchical Lexicon. Stanford, CA:
CSLI Publications.

Eckle, J. and U. Heid: 1996, ‘Extracting Raw Material for a German Subcatego-
rization Lexicon from Newspaper Text’. In: Proceedings of the 4th International
Conference on Computational Lexicography, COMPLEX’96. Budapest, Hungary.

Flickinger, D. and E. Bender: 2003, ‘Compositional Semantics in a Multilingual
Grammar Resource’. In: ESSLLI 2003 Workshop on Ideas and Strategies for
Multilingual Grammar Development. This volume.

Frank, A.: 1999, ‘From Parallel Grammar Development towards Machine Transla-
tion’. In: Proceedings of MT Summit VII. pp. 134–142.

Frank, A., T. H. King, J. Kuhn, and J. T. Maxwell: 2001, ‘Optimality Theory Style
Constraint Ranking in Large-scale LFG Grammars’. In: P. Sells (ed.): Formal
and Empirical Issues in Optimality Theoretic Syntax. Stanford, California: CSLI
Publications, pp. 367–397.

Hudson, R.: 1995, ‘Does English really have case?’. Journal of Linguistics 31, 375–
392.

Kaplan, R. M. and J. Bresnan: 1982, ‘Lexical-Functional Grammar: A Formal
System for Grammatical Representation’. In: J. Bresnan (ed.): The Mental
Representation of Grammatical Relations. The MIT Press, pp. 173–281.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.27

28 King, Forst, Kuhn, and Butt

Kaplan, R. M., T. H. King, and J. T. Maxwell III: 2002, ‘The Parallel Gram-
mar Project’. In: COLING 2002: Workshop on Grammar Engineering and
Evaluation. pp. 29–35.

Kaplan, R. M. and P. Newman: 1997, ‘Lexical Resource Reconciliation in the Xerox
Linguistic Environment’. In: D. Estival, A. Lavelli, K. Netter, and F. Pianesi
(eds.): Computational Environments for Grammar Development and Linguistic
Engineering. pp. 54–61. Proceedings of a workshop sponsored by the Association
for Computational Linguistics, Madrid, Spain, July 1997.

Kim, R., M. Dalrymple, R. M. Kaplan, T. H. King, H. Masuichi, and T. Ohkuma:
2003, ‘Multilingual Grammar Development via Grammar Porting’. In: ESSLLI
2003 Workshop on Ideas and Strategies for Multilingual Grammar Development.

Kuhn, J., J. Eckle, and C. Rohrer: 1998, ‘Lexicon Acquisition with and for Symbolic
NLP-Systems – A Bootstrapping Approach’. In: Proceedings of the First Interna-
tional Conference on Language Resources and Evaluation (LREC98). Granada,
Spain, pp. 89–95.

Maxwell, III, J. T. and R. M. Kaplan: 1993, ‘The Interface between Phrasal and
Functional Constraints’. Computational Linguistics 19, 571–589.

Pollard, C. and I. Sag: 1994, Head-Driven Phrase Structure Grammar, Studies in
Contemporary Linguistics. University of Chicago Press.

Przepiórkowski, A.: 2001, ‘ARG-ST on phrases: Evidence from Polish’. In: D.
Flickinger and A. Kathol (eds.): Proceedings of the 7th International Conference
on Head-Driven Phrase Structure Grammar. Stanford, California, pp. 267–284,
CSLI Publications.

Riezler, S., T. H. King, R. M. Kaplan, R. Crouch, J. T. Maxwell III, and M. Johnson:
2002, ‘Parsing the Wall Street Journal Using a Lexical-Functional Grammar and
Discriminative Estimation Techniques’. In: Proceedings of the ACL.

Wahlster, W. (ed.): 2000, Verbmobil: Foundations of Speech-to-Speech Translation.
Heidelberg, Germany: Springer.

rlc04-lfg-feat.tex; 22/11/2004; 13:45; p.28

