
Developing a Finite-State Morphological
Analyzer for Urdu and Hindi

Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

Universität Konstanz

Abstract

We introduce and discuss a number of issues that arise in the process of build-
ing a finite-state morphological analyzer for Urdu, in particular issues with po-
tential ambiguity and non-concatenative morphology. Our approach allows for an
underlyingly similar treatment of both Urdu and Hindi via a cascade of finite-state
transducers that transliterates the very different scripts into a common ASCII tran-
scription system. As this transliteration system is based on the XFST tools that the
Urdu/Hindi common morphological analyzer is also implemented in, no compati-
bility problems arise.

1 Introduction

As part of the ParGram (Parallel Grammar) project (Butt, King, Niño, and Segond
1999), (Butt, Dyvik, King, Masuichi, and Rohrer 2002), we are developing a grammar
for the South Asian language Urdu.1 Very few resources exist for this language, in
particular, no broad-coverage finite-state morphologicalanalyzer exists to date. Part of
the Urdu Grammar project is therefore to build a finite-statemorphological analyzer for
Urdu and to connect it up with the syntax via the morphology-syntax interface (Kaplan,
Maxwell III, King, and Crouch 2004) defined for Lexical-Functional Grammar (LFG;
Dalrymple 2001).

Current features of the Urdu ParGram project in the context of parallel grammar de-
velopment have already been discussed elsewhere (Butt and King 2007). In this paper,
we focus on some issues that have arisen with with respect to the morphological ana-
lyzer in particular. All the (larger) ParGram grammars to date include a finite-state mor-
phological analyzer that interfaces with the syntax. Thesemorphological analyzers are
generally built with the Xerox finite-state technology tools and follow the methodology
established by Beesley and Karttunen (2003). The finite-state tools and the solutions
already proposed by Beesley and Karttunen (2003) prove to bemore than adequate to
meet the challenges posed by Urdu. However, some interesting issues do arise with

1Thanks go to Tafseer Ahmed for helping us understand some issues with respect to the script and the
morphology.

1

2 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

respect to 1) the script and tokenization (section 2); 2) reduplication (section 3) ; 3)
potentially ambiguous information at the morphology-syntax interface (section 4).

2 Two Different Scripts, One Representation

Urdu is structurally almost identical to Hindi. The major difference is that the vocab-
ulary of Urdu bears more Persian/Arabic influences, while the vocabulary of Hindi is
more Sanskrit based. Both are ultimately descended from a version of Sanskrit (i.e.,
are Indo-European). Urdu as a separate version of the language came into being when
the Moghuls invaded the Indian subcontinent. The language of their court was Persian,
which came into contact with a local language generally referred to as Hindustani (or
Hindi). The very Persianized version of this language came to be known as Urdu.2

This brief historical sketch is of relevance because lexical items borrowed in from
Persian tend to behave differently (i.e., have different inflectional possibilities). How-
ever, questions of lexical and morphological origin tend tobe minor issues. A more
major issue is that Urdu and Hindi are written in very different scripts. Urdu is writ-
ten with a version of the Arabic script.3 Hindi, in contrast, is written inDevanagari, a
phonetic-based script passed down over the millenia from Sanskrit.

2.1 A Common Transliteration System

(1) and (2) show a couplet (162,9) from the poet Mirza Ghalib (1797–1869): (1) is
written in Urdu, (2) is the same couplet, but written in Devanagari (Hindi). Note that
Urdu is written right-to-left, whereas Hindi is written left-to-right.

(1)

(2)

Although the two writing systems differ markedly, the languages they encode are
structurally almost identical. Given this fact, our general strategy in building a morpho-
logical analyzer is to produce a resource that can be used fortext written in both Urdu
and Hindi. This involves building a transliteration systemthat goes from whichever

2Modern Hindi naturally also bears traces of language contact with Persian, but not as markedly as Urdu.
3Unicode fonts for this script have only recently been developed (e.g., seehttp://www.crulp.org ;

Rahman and Hussain 2003).

2.2 Future Morphology: Illustrating Tokenization Problems 3

script is being processed to a common ASCII base and then being able to generate back
out from the common ASCII base to either one of the scripts. That is, both the texts in
(1) and (2) are rendered as in (3).

(3) hAN bHalA kar tirA bHalA hOgA
yes good.M.Sg do then good be.Fut.M.Sg

Or darvES kI sadA kyA he
and dervish Gen.F.Sg call.F.Sg what be.Pres.3.Sg
‘Yes, do good then good will happen, what else is the call of the dervish.’

Our transliteration is based on proposals by Glassman (1977). Capitalized vowels
indicate length, H marks aspiration, N nasalization, S stands forS and other capitalized
consonants indicate retroflexes.

A transliterator in accordance with our overall strategy has been implemented by
Abbas Malik (2006). Malik’s HUMTS (Hindi-Urdu Machine Transliteration System)
is written as a cascade of finite-state transducers that transliterate from the Urdu and
Hindi scripts to SAMPA (Wells 1997), a common underlying phonetic ASCII alphabet,
and back out from SAMPA to the two differing scripts. SAMPA has been developed to
enable coverage of all the world’s languages; however, for the purposes of Urdu, it is
unwieldy and very difficult to read. In integrating Malik’s work into the Urdu grammar,
we will therefore use Glassman’s transliteration system. Beyond the simple conversion
of letters that is necessary to do this, we anticipate no further (major) problems as
HUMTS was written with the same XFST tools used in our Urdu grammar project.4

2.2 Future Morphology: Illustrating Tokenization Problems

Writing a transliterator that takes one script as an input and is able to output another
script is not an easy task. Many of the problems that arise arediscussed in Malik’s
work. In terms of the Urdu Grammar, most relevant to us are problems of tokenization.
In particular, problems associated with the future morphology in Urdu/Hindi was one
of the first to arise.

We already had an example of future usage in (1) and (2). An inspection of each
example will quickly reveal one of the very general problemsin dealing with the Urdu
script: while in Hindi, each word is clearly demarcated and easy to identify, in Arabic-
based scripts in general, word boundaries are very difficultto identify. One must basi-
cally know the language (i.e., be able to access the lexical items) in order to be able to
read the script.5

Beyond this very general problem, the scripts also encode differences of opinion as
to what exactly a word is. This is illustrated in (1) and (2) with respect to the future form
of ‘be’ hOgA. In (1) it is expressed by the last two letter groups on line one (reading
from right to left). In (2), the form is expressed by just one letter group: the last one

4Related work has been done by Humayoun, Hammarström, and Ranta (2007), who provide a transliter-
ator into ASCII as well, but do morphological analysis usingthe Functional Morphology Toolkit (Forsberg
and Ranta 2004).

5The same is not true for Devanagari, which, being phonetically based, allows a sounding out of the
words.

4 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

(reading from left to right) on line 1. This difference in encoding reflects an on-going
historical change.

The future in Urdu/Hindi is formed as shown in the paradigm (4) for the stemmAr
‘hit/kill’. The stem is followed by information about person and number (UN/E/EN/O),
to which the future markerg is attached. This, finally, is followed about information
about number and gender.

(4) Urdu Future Paradigm
Singular Plural Respect (Ap) Familiar (tum)
M/F M/F M/F M/F

1st mAr-UN-g-A/I mAr-EN-g-E/I
2nd mAr-E-g-A/I mAr-EN-g-E/I mAr-O-g-E/I
3rd mAr-E-g-A/I mAr-EN-g-E/I

mAr- ‘hit’

The future paradigm is thus a relatively complex assemblageof morphological
pieces. The person/number morphology is identical to that used in the subjunctive
paradigm, shown in (5). To these essentially subjunctive forms, a-g- is attached to
mark the future. The consensus in the available literature is that the future-g- is derived
from a Sanskrit participle of the verbgā ‘go’ (Kellogg 1893), (McGregor 1968). This
analysis immediately explains the gender and number agreement morphology (A/I/E)
exhibited by the future: Participles functioned like adjectives and so generally had num-
ber and gender agreement morphology. This morphology has simply been retained in
all the verb forms in Urdu/Hindi that derive from old participles (i.e., the perfect, im-
perfect and progressive forms), including the future.

(5) Urdu Subjunctive Paradigm
Singular Plural Respect (Ap) Familiar (tum)

1st mAr-UN mAr-EN
2nd mAr-E mAr-EN mAr-O
3rd mAr-E mAr-EN

mAr- ‘hit’

The old participle of the verbgā ‘go’ used to form its own word. Indeed, as recently
as a century ago, clitics like the emphatichI ‘even/only’ could intrude between the-g-
and the stem+subjunctive morphology. This is illustrated in (6).

(6) kAh-ũ=hi=ga
say-1.Sg=Emph=Fut.M.Sg
‘I will say (it), of course.’ (Hindi, from Kellogg 1893:§399)

These examples suggest that while the old participle was no longer functioning as
an independent word a century ago, it retained some prosodicindependence and was
probably functioning as a clitic (indicated by the glossingwith ‘=’). This is entirely
consonant with well known processes of historical change whereby words are reana-
lyzed as clitics and then reanalyzed further as inflectionalmorphology as they move
from expressing content words to functional elements (e.g., Harris and Campbell 1995,
Hopper and Traugott 1993).

5

The examples in (6) are only marginally possible in modern Urdu, whereas speakers
of Hindi tend to reject them outright. This difference in native speaker judgements may
or may not be correlated with the differences encoded in the writing system. Recall that
in written Hindi, the future is expressed in one word together with the subjunctive stem.
In Urdu however, the stem+subjunctive and the future+number+gender are generally
written as two separate words.

In both languages all the pieces of morphology involved nevertheless perform ex-
actly the same function, so our morphological analyzer should treat them in parallel. In
the morphological analyzer, the future-g- is treated as an inflectional morpheme and a
form like mArEgIwould be analyzed as in (7).

(7) mArEgI⇔
mAr+Verb+Subjunct+2P+Sg+Fut+Fem
mAr+Verb+Subjunct+3P+Sg+Fut+Fem

The tokenizer thus has to turn the Urdu input ofmArE gIintomArEgI. This in and of
itself does not present a problem, since the deletion of white space is not a problem. In
principle, since forms likemarEare also words in their own right, a serious ambiguity
problem could arise. However, asgI/gA/gEare not words in their own right,6 we do not
anticipate serious problems with our basic approach.

In sum, the future morphology discussed here provides a goodexample of the po-
tentially problematic factors that must be dealt with. Another, perhaps more interesting
problem posed by Urdu is that of reduplication.

3 Reduplication

Urdu/Hindi, like most of the South Asian languages, tends touse reduplication quite
frequently (Abbi 1991). All content words can generally be reduplicated and the effect
of the reduplication is to either strengthen/emphasize theoriginal word or to express
something like “and those kinds of things”.

(8) a. kHAnA vAnA
food.M.Sg. Redup
‘food and those kinds of things’

b. tHanDA tHanDA
cold.M.Sg. Redup
‘ice cold (cold cold)’

c. kHAtA vAtA
eat.Impf.M.Sg Redup
‘he is eating and such’

6gA is a word, namely the bare form of the verb ‘sing’. However, this would never (or rarely) occur in
conjunction with a subjunctive verb.

6 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

There are two different kinds of reduplication strategies.In the one illustrated by
(8a), the onset of the content word is replaced with another consonant. This consonant
could be eitherv, t. (T) or S (S). In another strategy ((8b)), the word is simply repeated.
We will refer to this latter strategy asfull word reduplication, the former strategy is
generally described asecho formationor echo reduplication.

3.1 General Strategy

Generally, reduplications are written as seperate words inboth Urdu and Hindi. The
fundamental problem facing the tokenizer is thus the fact that a reduplicated item must
be recognized. The transliteration system will yield two words, as shown in (9), for
example, which are separated by white space.

(9) calnA valnA
walk.Inf.M.Sg Redup
‘walking and such things’

Our morphological analyzer basically follows the solutionfor full stem reduplica-
tion presented by Beesley and Karttunen (2003) for Malay. The basic lexicon built
independently of reduplication for nouns, verbs, adjectives and other content words
interacts with reduplicating regular expressions.

The morphological analysis of reduplications as in (9) is shown in (10). That is,
within the morphological analyzer, the reduplicated form is simply registered via the
tag +REDUP and is passed on as such to the Urdu grammar, which can decide how to
use this information (or whether to use the very subtle semantic information implied by
reduplication at all).

(10) cal+Verb+Inf+Masc+Sg+Redup

In the Malay example presented by Beesley and Karttunen (B&K), the original
word and the reduplicated part are merged into a single word.Our implementation
differs from theirs in that we need to deal with the white space. Currently, we do this by
introducing the multiword%ˆHyphen into thelexcsource file (which encodes the basic
lexicon plus the morphological continuation classes). When dealing with reduplication,
we thus internally represent the two words involved as beingconnected with a hyphen.

Reduplication itself is managed, as in B&K, via the introduction of the multichar-
acter brackets"ˆ[" and"ˆ]" in order to mark the domain of reduplication. The right
bracket is additionally marked with the characters ˆ2. The lower side of the finite-state
network thus ends up being marked up via the brackets"ˆ[" and"ˆ2ˆ]" . As dis-
cussed in B&K, thecompile-replacealgorithm can be applied to the resulting network
— compile-replace essentially treats the marked up lower side as a regular expression
which is to be interpreted. The overall effect is that something like calnAends up being
doubled tocalnA-calnAdue to the ˆ2 specification (and the addition of the hyphen).

We illustrate our approach more concretely with respect to just the adjective ‘strange’
in terms of full word reduplication. The code illustrates a simple lexcfile which allows
for two possibilities for all adjectives. In one, a bracketing is begun which is intended

3.2 Echo Reduplication 7

for the reduplicated version. This is notated by the regularexpression ˆ2, which re-
sults in the doubling of the material delimited by the brackets. The bracket filter from
B&K removes any unmatched brackets that may have resulted from paths which contain
only one bracket.7 The bracket filter and the lexc file are composed, and the compile-
replace algorithm is applied to the resulting network. Compile-replace translates the
reduplication [...]ˆ2 into well-formed strings of this type: [...]%ˆHyphen[...]%ˆHyphen.
In a last step a regular expression (illustrated below as hyph.regex) then replaces the
hyphens (%ˆHyphen) used for internal management of the reduplicated forms with a
white space.

* !AdjRedup.txt, lexc file just for ajIb ’strange’

* Multichar_Symbols

* +Adj +Unmarked +Redup +Intensifier

*
* Lexicon Root

* 0:ˆ[[{ Unmarked ;

* Unmarked;

*
* Lexicon Unmarked

* ajIb Ending ; !the adjective ‘strange’

*
* Lexicon Ending

* +Adj+Unmarked+Redup+Intensifier:}%ˆHyphen]ˆ2ˆ] # ;

* +Adj+Unmarked:0 # ;

*** *****
* ! bracketfilter.regex --- bracket filter from B&K

* [˜ [? * "ˆ[" ˜$["ˆ]"]] & ˜[˜$["ˆ["] "ˆ]" ? *]];

*** *****
* !hyph.regex, removes ’%ˆHyphen’ and inserts a white space

* [%ˆHyphen -> 0 || %ˆHyphen ? * _]

* .o.

* [%ˆHyphen -> " "] ;

3.2 Echo Reduplication

Recall that echo reduplication further requires the use of adifferent consonant/onset
in the reduplicated form ((11)). In order to deal with this further complication, we
introduce replace rules to effect the phonological change and further make use of flag
diacritics (@P.ECHO.v@in the rules below, cf. B&K) in order to flag that the echo
type of reduplication has taken place.

(11) AlU vAlU
potato.M Redup
‘potatoes and such’

7This can be done differently, by controlling the continuation paths of the lexc file more tightly, however,
in the long run, this results in a conceptually more complex structure of the lexc file and it is thus preferable
(and more efficient) to simply apply the bracket filter on unwanted paths.

8 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

The phonological replace rules shown below exemplify just two cases. In redupli-
cating contexts (i.e., contexts which have been marked up bya Hyphen), either the first
consonant8 is replaced by av, or if there is no onset as in (11), av is inserted. We have
formulated similar rules for reduplications witht. (T) or S (S).

Cons stands for the set of consonants (this is predefined). The phonological re-
placement rule below thus operates on Consonants or Vowels (listed here individually,
though this could also be done differently). Consonants arereplaced by av (or T or S
in the rules not shown here). If there is no consonant, then av (or T or S) is inserted
before the vowel.

Cons -> v || ? * %ˆHyphen _ ? * "@P.ECHO.v@"
.o.
a -> v a , e -> v e , i -> v i, o -> v o,
u -> v u || ? * %ˆHyphen _ ? * "@P.ECHO.v@";

We thus implement the two differing reduplication strategies by using a range of
FST methodologies. Full word reduplication is treated via amarkup that feeds into the
compile-replace algorithm. Echo reduplication additionally requires the use of phono-
logical replace rules and flag diacritics.

Overall, allowing for reduplication results in a threefoldincrease of the basic lexi-
con. However, this increase is dealt with in a conceptually elegant manner and can be
achieved by writing just a few extra lines of code (regular expressions) that are com-
posed with the source lexc file. In our approach, we have basedourselves on the B&K
solution — the successful application of their basic idea toUrdu provides a confirmation
of the basic principles of finite-state based non-concatenative morphology formulated
by B&K.

4 Issues in Potential Ambiguity

In this final section of the paper, we address some issues thatarise with respect to the
morphology-syntax interface. Recall from the discussion of the Urdu/Hindi future in
section 2.2 that the future is formed in combination with subjunctive forms. Our present
analysis of future forms is thus as in (12).

(12) mArUNgI⇔
mAr+Verb+Subjunct+1P+Sg+Fut+Fem

From the perspective of the syntax (and semantics), markingthese forms as subjunc-
tive as well as future is unnecessary as every future form also carries some subjunctive
meaning with it (this has been dubbedcontingent futurein the literature). Experience
gathered with respect to the German ParGram grammar (Butt, King, Niño, and Segond
1999) has shown that it is ultimately better to eliminate tags of this kind from the mor-
phology, since dealing with them complicates the morphology-syntax interface. Given
that there are simple subjunctive uses as in (13), the interpretation of the +Subjunct

8So far, all the words in our lexicon have just simple consonants as onsets — this seems to be a strong
tendency, if not a hard phonotactic constraint of Urdu.

9

tag within the morphological component will need to differ depending on whether it is
found in conjunction with future morphology or not.

(13) mArUN⇔

mAr+Verb+Subjunct+1P+Sg

We have therefore decided to eliminate the +Subjunct tag from the morphological
analysis of future forms altogether even though the morphology involved is in actual
fact the subjunctive morphology.

A somewhat different version of this same problem is found with respect to Urdu/Hindi
infinitives as indEkHnA‘to look/looking’, which can also be used as verbal nouns. To
date, the morphology provides analyses as in (14).

(14) dEkHnA⇔
dEkH+Verb+Inf+Masc+Sg

It will be imperative to know that infinitives can also function as nouns in the gram-
mar. It might therefore be necessary to anticipate this in the morphology and provide
both the analyses in (15) for the syntax.

(15) dEkHnA⇔
dEkH+Verb+Inf+Masc+Sg
dEkH+Noun+Deverb+Masc+Sg

However, this would result in quite a bit of ambiguity withinthe morphological
analyzer. Our current solution, shown in terms of LFG functional annotations in (16) is
therefore to add the information that this form could optionally (denoted by the round
brackets) be used as a noun whose type is deverbal as part of the definition of the
morphology-syntax interface.

(16) +Inf ((↑NTYPE) = deverbal).

The abstract morphological tag +Inf is thus annotated with the functional informa-
tion that it could also be used as a noun, in which case it is deverbal. This solution
pushes the ambiguity from the morphology into the syntax, but since the syntax can
eliminate the ambiguity by means of unifying in other information, it may be better to
deal with the ambiguity in the syntax, rather than in the morphology, where no con-
textual information is available. We are currently experimenting with both possible
solutions to determine the better one.

5 Conclusion

In this paper we have introduced and addressed a number of issues that arise in the pro-
cess of building a finite-state morphological analyzer for Urdu. Our approach allows
for an underlyingly similar treatment of both Urdu and Hindivia a cascade of finite-
state transducers that transliterates the very different scripts into a common ASCII tran-
scription system. As this transliteration system is based on the XFST tools that the

10 Tina Bögel, Miriam Butt, Annette Hautli, and Sebastian Sulger

Urdu/Hindi common morphological analyzer is also implemented in, no compatibility
problems arise.

We further explored reduplication in Urdu, again basing ourselves on solutions pro-
posed with respect to XFST and show how differing reduplication patterns in Urdu/Hindi
can be dealt with elegantly with the finite-state methods proposed by B&K.

Finally, we addressed some potential ambiguity problems and discussed different
ways of solving them. The discussion here mainly revolves around where and how
information should be encoded with respect to the morphology-syntax interface that
has been defined between finite-state morphological analyzers and LFG grammars as
part of the ParGram project.

References

Abbas Malik, M. (2006). Hindi Urdu machine transliterationsystem. MSc Thesis,
Paris 7.

Abbi, A. (1991).Reduplication in South Asian Languages. An Areal, Topological
and Historical Study.New Delhi: Allied.

Beesley, K. and L. Karttunen (2003).Finite State Morphology. Stanford, CA: CSLI
Publications.

Butt, M., H. Dyvik, T. H. King, H. Masuichi, and C. Rohrer (2002). The Parallel
Grammar project. InProceedings of COLING, Workshop on Grammar Engi-
neering and Evaluation, Taipei, pp. 1–7.

Butt, M. and T. H. King (2007). Urdu in a parallel grammar development environ-
ment.Language Resources and Evaluation. Special Issue on Asian Language
Processing: State of the Art Resources and Processing. To Appear.

Butt, M., T. H. King, M.-E. Niño, and F. Segond (1999).A Grammar Writer’s Cook-
book. CSLI Publications.

Dalrymple, M. (2001).Lexical Functional Grammar. Academic Press.

Forsberg, M. and A. Ranta (2004). Functional morphology. InProceedings of Ninth
ACM SIGPLAN International Conference of Functional Programming, pp. 213–
223.

Glassman, E. H. (1977).Spoken Urdu. Lahore: Nirali Kitaben.

Harris, A. C. and L. Campbell (1995).Historical Syntax in Cross-Linguistic Per-
spective. Cambridge: Cambridge University Press.

Hopper, P. J. and E. C. Traugott (1993).Grammaticalization. Cambridge: Cam-
bridge University Press.

Humayoun, M., H. Hammarström, and A. Ranta (2007). Urdu morphology, orthog-
raphy and lexicon extraction. In A. Farghaly and K. Megerdoomian (Eds.),Pro-
ceedings of the 2nd Workshop on Computational Approaches toArabic Script-
based Languages, pp. 59–66. Held at the Stanford LSA 2007 Institute.

REFERENCES 11

Kaplan, R. M., J. T. Maxwell III, T. H. King, and R. Crouch (2004). Integrating
finite-state technology with deep LFG grammars. InProceedings ESSLLI, Work-
shop on Combining Shallow and Deep Processing for NLP.

Kellogg, S. H. (1893).Grammar of the Hindi Language. Delhi: Munshiram
Manoharlal Publishers Pvt. Ltd. Second Edition, reprinted1990.

McGregor, R. (1968).The Language of Indrajit of Orch̄a. Cambridge: Cambridge
University Press.

Rahman, S. and S. Hussain (2003). Development of character based Urdu Nastaleeq
font. Asian Media and Communication Bulletin 33(2).

Wells, J. (1997). SAMPA computer readable phonetic alphabet. In D. Gibbon,
R. Moore, and R. Winski (Eds.),Handbook of Standards and Resources for Spo-
ken Language Systems. Berlin and New York: Mouton de Gruyter.

