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ABSTRACT
We argue that there is a need for substantially more research
on the use of generative data models in the validation and
evaluation of visualization techniques. For example, user
studies will require the display of representative and uncon-
founded visual stimuli, while algorithms will need functional
coverage and assessable benchmarks. However, data is often
collected in a semi-automatic fashion or entirely hand-picked,
which obscures the view of generality, impairs availability,
and potentially violates privacy. There are some sub-domains
of visualization that use synthetic data in the sense of genera-
tive data models, whereas others work with real-world-based
data sets and simulations. Depending on the visualization
domain, many generative data models are “side projects” as
part of an ad-hoc validation of a techniques paper and thus
neither reusable nor general-purpose. We review existing
work on popular data collections and generative data models
in visualization to discuss the opportunities and consequences
for technique validation, evaluation, and experiment design.
We distill handling and future directions, and discuss how we
can engineer generative data models and how visualization
research could benefit from more and better use of generative
data models.

CCS Concepts
•General and reference → Validation; Evaluation;
•Human-centered computing→Visualization design
and evaluation methods;
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1. INTRODUCTION
In contrast to manual data collection and production, gen-
erative data models leverage computers to generate data,
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distinguish instances among the ones generated, based on
common properties and thus define what is considered valid
and representative data. Generative models allow us to ad-
dress difficult challenges when designing, testing, benchmark-
ing, and assessing visualization techniques in general: How
can we extract and design around data-inherent constraints?
How can we validate an implementation? How do we reason
about the visual response of a system to data? How can we
measure technical, visual, and perceptual scalability? How
do users interact with a visualization? How can we verify
that information is understood well? As researchers, we need
to conduct empirical experiments to find answers to these
questions [102].
Others have reviewed and discussed the practice of evalu-

ating visualization systems [53, 65], albeit focusing on the
processes of designing, performing, and evaluating studies.
We are convinced that data itself should receive more atten-
tion to improve research quality by eliminating confounding
variables for testing a hypothesis and obtaining a link between
a data model’s parameter space (input) and the visualization
result (output) for statistical analysis. In this way, we will
be in a better position to prove correctness and complete-
ness of a technique, i.e., without introducing statistical bias
through samples with questionable representativeness. A
trend toward increase in both data size and complexity [2]
could prove as a bottleneck in collecting data for user studies,
lab studies, performance studies, and testing. Abstract and
formal descriptions are more compact, easier to transfer, and
thus leverage availability for experiments, while usually also
being more tangible and thus beneficial for analysis. For
reliable empirical research results, we need to be able to
conduct controlled experiments and isolate what we want to
measure. Yet, input data during our experiments is often
cluttered with confounding variables. We are convinced that
generative models will help us produce data with different
characteristics to allow comprehensive data collection and a
thorough evaluation of user studies and studies of technical
performance alike. Finally, ethical and legal issues are often
connected to data collection, in particular, privacy and prop-
erty. For example, institutions or companies are reluctant
to publish medical, social, or personal data. The current
situation of data collection often hinders development and
research of new visualization techniques, while generative
models are scattered across the visualization community with
many of them being “side projects” of techniques papers,
and thus not reusable, let alone general-purpose.
With this combination of position and survey paper, we
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Figure 1: Workflow for validation and evaluation of visualization techniques using generative data models.

want to focus on generative data models as part of visualiza-
tion research. The (larger) part of the paper reviews relevant
examples of such data models to understand the state of the
art across the main subfields of visualization. In this way, we
arrive at a substantiated perspective on interesting future
directions that will lead to a better and more frequent use
of these data models.

2. OVERVIEW
A generative data model is a simplified and idealized under-
standing of an observation, capable of generating data values.
This definition is not to be confused with generative models
from machine learning, having a far more narrow definition
of what a model is. A related term is procedural content
generation, known from computer graphics or games. The
techniques used are similar, but the goals are different: the
computer-graphics term emphasizes consumability, whereas
the visualization community’s term emphasizes hypothesis
testing. Figure 1 shows our abstraction of the workflow for
experiments in visualization research that work with genera-
tive models. A generative model is derived from a theoretical
or real-world observation to generate samples, as opposed to
measured samples. The dashed line is for hybrid generative
models. The visualization system is put into the loop for
validation or evaluation purposes.
The visualization community aims for controlled experi-

ments as an important element of empirical research. We
restrict our discussion to the following relevant requirements
in terms of data: validity, representativeness, availability,
and privacy.
Opportunistic data collections are inherently valid, given

the collection method is valid, but representativeness might
be questionable. Collected samples may be very large and
hence technically complicated to store and transfer, hamper-
ing availability. Furthermore, it is much too easy to apply
bad anonymization, impinging on privacy issues with severe
personal and legal consequences in the real world.
Generative models, in contrast, are an abstract descrip-

tion, and thus do not contain any private information. Yet,
they are easy to store and transport, but their validity is
always in question because models are a picture of the world
based on its author’s beliefs and values. From our point of
view, validity depends on the target experiment requirements.
In practice, a good generative model does not necessarily
mimic real world observations in their entirety, but just the

Table 1: Tagging scheme for generative data models.

Tag Meaning

Parameter Extraction

rewriting systems replace subterms of a formula with other
terms

(local) search means moving from solution to solution in
the space of candidate solutions by applying
changes

imitation is based on an observed process

Parameter Type

local establishes a local property
global establishes a global property
forward problem parameter manipulation happens in the

model’s domain
inverse problem parameter manipulation happens in the

model’s codomain

Technique

measured defines a magnitude of some attribute of an
object relative to some unit of measurement

user-defined requires user input to determine an analytical
or numerical solution

hybrid diversity is generated based on top of a non-
generative data model

random model inherently contains a random variable
deterministic model contains no randomness
closed-form an expression that can be evaluated using a

finite number of operations
sequence model generates a sequence of data, e.g., data

ordered by time
emulation imitation of the end result of a real-world pro-

cess behavior, i.e., that does not approximate
intermediate steps

simulation imitation of the operation of a real-world pro-
cess or system, i.e., that approximates inter-
mediate steps

aspects to be tested. Because a generative model is also a
formal description relating input parameters to output data,
representativeness is well defined, which allows us to con-
nect model and measurement, enabling exhaustive analysis
techniques.
Although using generative models for visualization experi-

ments sounds easy and tempting, there are many technical
obstacles to deal with in practice. How can we synthesize
data with certain desired properties artificially, while the
generated data exhibits the relevant characteristics of real
data to guarantee the external validity? How do we relate
model parameters to visualization results? These are difficult



questions from a scientific and engineering perspective.
Based on our findings from the survey, we present a tagging

scheme for generative models, organized into three categories,
shown in Table 1. The first category is about high-level pa-
rameter extraction. Presumably all model parameters can
be obtained using rewriting (e.g. L-systems), search (e.g.
heuristics), or imitation (e.g. simulations), each with differ-
ent trade-offs. The second category is about how to think
about model parameters: whether a parameter establishes
a global property (i.e. all) or a local property (i.e. there is)
of a dataset, and where interaction happens (i.e. forward or
inverse problem). The third category is about techniques
used for generating data.

3. LITERATURE SURVEY
This section surveys of the state of art of generative data
models related to visualization. The survey is organized
according to the classification of visualization methods by
Tory and Möller [112]: typical techniques from scientific
visualization (scalar, vector, and tensor field visualization)
and information visualization (multi-dimensional data and
network or graph visualization). The organization has been
extended to incorporate recent trends within the visualization
community, in particular, trajectory and text visualization.
Most real-world visualization and visual analytics systems
are not restricted to a single visualization technique from
our structure but can deal with various combinations of
data types and techniques. We do not explicitly cover such
hybrid combinations in our survey; however, many of the
single-technique data models will carry over to such hybrid
approaches and therefore serve as a good basis.
To conduct our survey, we gathered experts from different

visualization domains to summarize the state of data col-
lections and generative models within their domains. In an
iterative process, we refined the tagging scheme (Section 2)
to reflect the main aspects of the paper collection and to
update the tagging assignments to the papers. This process
is similar to previous approaches to literature surveys [8].
The following discussion of the literature explicitly includes
the tags in italics for techniques employed in generative data
models; the other tags are mostly used internally.
Our approach is systematic in the sense that it covers the

relevant areas of visualization techniques. However, it is not
meant to be a comprehensive survey of papers in a certain
field. We have been facing the problem that there are few to
no relevant papers in the visualization literature for some of
the visualization techniques. Therefore, we include papers
from other fields that have some connection to generative
models for visualization. Due to this breadth of possible
journals or conferences of interest, we chose to include the
expertise of the visualization experts to select representative
sets of papers.
The following review will also show that many subdisci-

plines of visualization lack an extensive use of generative data
models. For a complete picture, we include a few pointers
to measured data that do not come with any synthesization
method, i.e., which are not generative in nature.

3.1 Scalar Field Visualization
Scalar fields assign a single (scalar) data value to each point
of a dataset. For visualization, mostly 2D and 3D spatial
domains are considered, and in many cases they are time-
dependent as well. Depending on the area of application,

different data with different characteristics are considered
representative, and there is a variety of available datasets
for different domains, such as the CT Dataset Archive1,
OASIS2, or DWD GDS3. For the evaluation of generic volume
visualization techniques, it is common practice to use a
number of datasets from repositories such as volvis.org4.
An important class of scalar field data comes from mea-

surements obtained via scanners, most commonly for medical
but also for industrial applications, like material testing. For
example, computed tomography (CT) scanners reconstruct
a volume for several X-ray projections [115]; magnetic reso-
nance imaging (MRI) scanners use magnetic fields and radio
frequency pulses [105]. Depending on the technology used,
data can be static or time-dependent. Sometimes, computer
simulations are employed to model the scanning procedure,
both for the purpose of research and education [5]. However,
most of the scanning-based datasets are just measured and
cannot be used as a basis for controllable data generation.
Another common source of scalar data are simulations

employing physically-based models5. They typically output
several quantities that can be scalar volumes, but e.g., also
vector fields (Section 3.2). Apart from the large field of flow
simulations, there are other types like the estimation of a
fire danger index for geographic regions based on vegetation,
topology information, and weather data [20]. Also, note that
new volume data can be produced using these simulations
as input, e.g., via the extraction of similarity information
and temporal clustering [39]. Although simulation-based
data models allow us to generate new datasets, e.g., by re-
running the simulation with different parameter settings,
these simulations are not designed to serve as controllable
data sources for empirical studies.
The third class of datasets are derived from closed-form

representations. The classic example is Buckminsterfuller-
ene—the so-called bucky ball—the spherical C60 fullerene
molecule. Other examples include the hydrogen atomic wave
function, equations from quantum mechanics, and 3D frac-
tals. Their representation is resolution-independent, differing
from the typically (grid-based) data by measurement and
simulation, and it is therefore the perquisite to studying cer-
tain characteristics of visualization techniques [38]. Analytic
representations are closer to the needs of generative models,
but many of these representations have no steering parame-
ters or the parameters cannot be easily used to control the
data generation for empirical studies.
Apart from previously discussed scientific data, there are

related data models from computer graphics. For example,
modeling and rendering tools like Renderman6 are used to
generate clouds. Solid texture synthesis algorithms automat-
ically generate volumes from a set of 2D example images [90].
Other approaches restrict synthesis to a subset of the voxels
of interest, such as a single surface layer [28]. There are
procedural models for which the user specifies material in-
formation at certain layer depths for given 3D surfaces using
a scripting language [24]. Similarly, there is a sketch-based
system to design volume data from scratch [86]: the user
splits a surface model and paints brush strokes to volumet-

1http://www.sci.utah.edu/cibc-software/
2http://oasis-brains.org/
3http://www.dwd.de/DE/leistungen/gds/gds.html
4http://volvis.org/
5http://vis.cs.ucdavis.edu/VisFiles/pages/dataset.php?ds=1
6https://renderman.pixar.com/view/tgt_volumes
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rically fill the 3D space. Finally, different types of data
may also be combined, e.g., simulated data can be used as
input for manual modeling, or measured data may be altered
procedurally. In short, the computer graphics approaches
provide some examples of user-defined, simulation-oriented,
measured, and closed-form generative models, which could
inspire visualization research. However, there is no model
that would directly lead to generative models for empirical
tests of visualization.
Scalar data exhibits different properties that can be used

to test certain characteristics of visualization techniques.
They may be altered for evaluation via a variety different
approaches outlined below, some of which are 3D extensions
of image processing techniques7. Scalar fields may be given
via different representations, and resampling and conversion
between them can be done to evaluate both the accuracy and
performance of visualization techniques [37]. The stability
under noise is an important property for many types of data,
and it may be applied additionally on the data for evaluating
robustness [39]. Finally, many techniques differ for static
versus time-dependent representations.

3.2 Vector Field Visualization
Vector field visualization techniques are often used for the
analysis of fluid flow. The structure and complexity of the
vector field depend on the type of visualization technique
to be tested. A simple closed-form flow may be sufficient to
measure the extent of numerical diffusion introduced by a
texture advection method [66]. In contrast, we need more
complex datasets with time-dependency, stretching, and fold-
ing behavior to assess visualization techniques based on
Lagrangian coherent structures (LCS) [46]. Such data can
also serve as a validation for integral surfaces where care
must be taken to adapt the meshing to the stretching and
thinning regions of the flow. Moreover, for flow visualiza-
tion techniques (as opposed to general vector visualization
techniques, e.g., for magnetic fields), datasets should be so-
lutions of the Navier-Stokes equations. This is important in
the physical validation of the visualization techniques. For
topology visualization [67], the existence of sinks and sources
is desired to test the robustness of detection and tracking
methods for critical points.
One class of complex vector fields comes from measure-

ments of experimental data. For example, particle image
velocimetry (PIV) allows one to measure the velocity vector
field of a fluid flow. PIV data were used to assess texture-
based [13] and topology-based [85] uncertainty visualization.
A common problem with the experimental datasets is that
they usually require some pre-processing to, e.g., filter out
the noise. Moreover, such data has typically limited spa-
tial and temporal resolution, and scaling the datasets is not
trivial due to highly non-linear flow behavior.
Another class of vector fields is given by user-defined data.

For example, image-based flow visualization [118] comes with
a demonstration program in which the user can hand-pick the
locations of critical points in the vector field8; also, one can
assign velocity to those elements to achieve time-dependency.
Laidlaw et al. [64] employed random vector field generation:

they selected randomly nine positions within a unit square
where the vectors were again chosen randomly. From these
7https://www.wolfram.com/mathematica/new-in-9/
3d-volumetric-image-processing/
8http://www.win.tue.nl/~vanwijk/ibfv/

points, the vector field on the whole domain was generated by
interpolation. Liu et al. [73] adopted a different approach, in
that they defined the critical points explicitly and generated
structurally different vector fields with similar topological
complexity. Such user-defined datasets allow for optimization
by their local properties, i.e., critical points.
Simple closed-form models can be used to assess the qual-

ity of texture advection methods. For instance, rotational
flow can be used to demonstrate visual artifacts in dye ad-
vection [58, 71]. LCS can be investigated with an analytical
model of a double-gyre flow, whose parameters allow for both
steady and unsteady flow [107]. Spherical vortex models [100]
can be extended by swirl and tilt to obtain phenomena that
occur in nature [89]; although the modified version is no
longer a solution to Navier-Stokes equations, it provides flow
characteristics that help test certain visualization methods.
An often used data model is the “tornado” dataset9 that is
defined by an analytic expression and lends itself to testing
interactive texture-based visualization methods [21, 123].
There are many works in vector field visualization that

demonstrate the techniques on “standard” datasets that
are numerical solutions of Navier-Stokes equations. How-
ever, each paper uses its own simulation result with custom
parameters, so quantitative method comparison is difficult.
Examples of such datasets are the flow around a cylinder with
Von Kármán vortex street10 [119], Taylor-Couette flow [7],
and delta wing [40].

3.3 Tensor Field Visualization
Tensor fields are used to describe complex phenomena that
cannot be sufficiently represented with scalar or vector fields,
e.g., mechanical stress or diffusion processes. Visualization
research focuses mainly on symmetric second-order tensors
and two application areas: Engineering applications use
tensor fields, e.g., to analyze mechanical stress or fluid flow.
In medical applications, diffusion tensor imaging (DTI), a
special variant of magnetic resonance imaging (MRI), is used
to measure the diffusion of water molecules.
There are some repositories for measured DTI data, e.g.,

data from the Human Brain Project11, from the Human
Connectome Project12, from the Alzheimer’s Disease Neu-
roimaging Initiative13. However, there seems to be no long
tradition of common benchmark data in this field. Therefore,
the MICCAI DTI Challenge14 [95] was established. There
seem to be no open repositories for other types of tensor
fields.
The visualization and analysis of diffusion tensor fields is

an important topic in medical research [69] and the respective
methods are usually evaluated with measured DTI data from
real patients [95]. To obtain DTI scans with specific proper-
ties, phantoms are used. Phantoms are physical objects with
specific properties, e.g., they consist of capillaries to emulate
fiber structures [114, 126]. Typically, such phantoms are
handmade and generative models are not involved. However,
this might change since experiments with 3D printed phan-
toms are performed [82]. There are also approaches that

9http://web.cse.ohio-state.edu/~crawfis/Data/Tornado/
10http://www.csc.kth.se/~weinkauf/notes/cylinder2d.html
11http://cmrm.med.jhmi.edu/cmrm/page_register/
registrationORcheckpw_ok.html

12http://www.humanconnectomeproject.org/data/
13http://adni.loni.usc.edu/data-samples/
14http://projects.iq.harvard.edu/dtichallenge15/home
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manipulate or deform measured data to generate ensembles
of new datasets, e.g., by employing statistical (random) and
physically-based (simulation-based) deformations [47].
Rather simple synthetic datasets are only used to demon-

strate or test certain properties of developed methods. Exam-
ples include synthetic data with separating or crossing fiber
structures [50, 62] and synthetic data consisting of a disk with
varying diffusivity and anisotropy [61]. Synthetic datasets
are used to test tensor fiber tracking [68, 113]. Simple sim-
ulated stress tensor fields are applied for hyperstreamline
techniques [25], and for 3D tensor field topology [48]. An-
other synthetic tensor field is based on randomly generated
tensors placed at the eight corners of a 3D cell, with trilinear
interpolation within the cell [130].
There are also more complex approaches for generating

DTI data, e.g., the generation of synthetic DTI data of a hu-
man brain with a tumor [94, 96]. In these cases, the growth
of tumors is simulated including biochemical processes, i.e.,
the approaches use rather complex simulation concepts. In
engineering applications, most use cases already involve sim-
ulations. Hence, respective simulation tools already exist
and have not to be developed for the purpose of evaluation.
Examples are simulated stress tensor fields [27, 52, 131] or
gradient tensor fields derived from computational fluid dy-
namics (CFD) [129], or from simulations of earthquakes and
engines [87].

3.4 Multi-Dimensional Data Visualization
Multi- and high-dimensional data visualization techniques
depict visual mappings and transformations such as dimen-
sion reduction and ordering. They are typically designed to
solve tasks such as visual analysis of clusters, correlations,
and outliers among a subset of dimensions and records.
The outstanding characteristic of multi-dimensional data is

the so-called curse of dimensionality. With increasing dimen-
sionality, a global similarity definition between data records
loses its discriminative behavior [10, 49]. Furthermore, irrele-
vant, redundant, and conflicting dimensions highly influence
the understanding of a given dataset, hence also pose a chal-
lenge when generating data, e.g., for evaluation purposes.
While a few approaches compare the results of multiple

datasets (e.g., [70, 106, 127]), most techniques evaluate only
one or two datasets. Also, there is no established set of
commonly used datasets or generation models. This fact
influences a fair comparison.
In the literature, there are three types of “data sources”

that are used in multi-dimensional data visualizations.
(1) It is common practice to use domain-specific datasets

that are not openly accessible due to e.g., privacy restrictions.
In a publication, the results are shown and described, but it is
not possible to reproduce and compare the results with other
techniques. A few methods exist to automatically generate
data based on such measured world data [19, 30, 31, 81].
The model hereby tries to preserve the relationships of the
original data such as the data distribution, correlations, and
clusters. While these methods are useful when the original
data is not available, it is rather uncommon to use them in
the visualization community.
(2) From the data mining and machine learning community,

there are various repositories of publicly available real-world
datasets, often resulting from measurements. The datasets
are usually labeled for specific (data mining) tasks such as
classification, regression, and cluster analysis. Commonly

used datasets comprise the Iris, Car, Yeast, Ecoli, and
Wine datasets from the UCI Machine Learning Repository15,
the census data16, or different variations of the so-called
SwissRoll17 (e.g., [97]) for the evaluation of dimension
projection techniques. Another well-known repository is the
Collections of Datasets by Weka18[45].
(3) Many visualization techniques are applied to synthetic

data. The main approach to generating multi-dimensional
data is to determine a number of dimensions, add the cor-
responding patterns to the data (e.g., clusters, correlations,
outliers, etc.), and overlay it with distractors such as noise
and outliers. Besides the pattern model itself, many parame-
ters influence the generation process: number of dimensions,
instances, and patterns as well as pattern size, overlap of
patterns, data distribution of patterns and dimensions, and
the impact of the distractors (i.e., the amount of noise that
is added).
Synthetic data is frequently generated for one approach and

explicitly designed to show that existing methods are outper-
formed, sometimes even without providing a description of
the underlying generation model. Even though, publications
like [36] provide a high-level description of the generation
model. Regrettably, except for some comparison papers such
as [78], synthetic datasets are often not publicly available.
In the following, we describe commonly used approaches

to generate multi-dimensional data. Many researchers write
small scripts to generate data. In a few approaches the
underlying model is well described and defined, e.g., by inter-
secting planes [72] or variations of the SwissRoll [97]. Other
approaches [55, 56] use rules and statistics to encode rela-
tionships between data instances (e.g., older person implies
higher income) and allow one to insert anomalies for different
applications. The data is typically created in a black-box
manner, making its scope and validity hard to grasp.
To overcome the black-box problem, recent approaches

include the user-defined elements in the data generation
process. While such semi-automatic approaches are typi-
cally time-consuming, the user knows exactly which and
how patterns are distributed in the data. The approach
by Albuquerque et al. [3] focuses on visual properties by
representing user-defined structures as probability density
functions. Afterward, the specified number of points is sam-
pled according to these structures. In the PCDC tool [15],
a user can visually add clusters of different size in subsets of
the dimensions. The data instances are randomly distributed
according to user-selected distributions within a cluster and
each dimension. Another approach [120] lets the user sketch
specific characteristics in parallel coordinate plots. iLAMP
[93] starts from patterns in a low-dimensional space and
projects them afterward in a high-dimensional space.

3.5 Network and Graph Visualization
Instances of graph data generally serve as illustrations for
network visualization techniques, to evaluate graph layout
algorithms, or as treatments in user studies.
Repositories such as SNAP,19 KONECT,20 the UFL Sparse

15http://archive.ics.uci.edu/ml/
16http://www.census.gov/data.html
17http://isomap.stanford.edu/datasets.html
18http://www.cs.waikato.ac.nz/ml/weka/datasets.html
19http://snap.stanford.edu/
20http://konect.uni-koblenz.de/
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Matrix Collection,21 the DIMACS Implementation Chal-
lenges,22 and the Graph 500 List23 are opportunistic collec-
tions of benchmark data. Many experiments in the graph
literature have made use of the same two collections,24 re-
ferred to as the Rome graphs and the AT&T graphs. None of
these collections satisfies any criterion of representativeness
or coverage.
Since network models are an important tool in network

science, and social network research in particular, a plethora
of models have been proposed [42, 109]. Although it is often
claimed that the intention is to reproduce empirical networks,
most of these models are highly idealized.
Like for other combinatorial structures, network models

consist of a family of sets of graphs defining the possible out-
comes, and a probability distribution on this state space. The
classic examples are uniform random graphs, the so-called
Erdős-Rény model G(n, m), where the possible outcomes are
all undirected graphs with exactly n vertices and m edges,
and probabilities are uniform [34]. This is largely equivalent
to the G(n, p) model, in which each edge is included with
probability p independently. (For p = m/

(
n
2

)
, the expected

number of edges is m.) A graph sampled uniformly at ran-
dom is likely to exhibit certain properties [12] that are hardly
representative for networks in specific application domains.
The G(n, p) model is useful rather as a baseline model.
Structurally biased models usually fix certain graph in-

variants or other properties, or specify a distribution for
them. For instance, the degree sequence may be fixed or
drawn from a global distribution, or a partition may be given
such that edge probabilities are uniform only for pairs of
vertices from the same two sets. Models such as preferential
attachment, where vertices are introduced one at a time and
linked to other based on their current degree [6], are more
conveniently formulated as processes.
Dependencies may also be introduced via vertex attributes

such as preferential attachment based on a vertex attribute [11]
or edge probabilities depending on similarity in some latent
space defined by vertex attributes such as random coordi-
nates [51]. When attributes are part of the output, they are
usually drawn from some distribution after the graph has
been created.
In the small-world model, a systematically constructed

sparse graph with high local clustering is modified, using
its symmetric difference with a uniform random graph, be-
cause this introduces shortcuts that reduce the average dis-
tance [121]. More generally, observed or constructed graphs
can be subjected to random or biased modification to estab-
lish or prevent features, or to produce a sequence of graphs
as input for dynamic visualization systems.
If they involve generators at all, user studies often utilize

networks from simple random graph models such as G(n, p)
or its variants [125, 44]. Sometimes local variation is in-
troduced, and the distribution is pre-specified [117, 80, 9].
Such specifications may even be the result of users sketching
adjacency matrices [124]. Properties other than clustering
and degrees distribution are rarely controlled despite their
likely relevance in shaping a visualization.
The crucial problem with all of these generators is that

they are defined with attention to a bounded number of
21http://www.cise.ufl.edu/research/sparse/matrices/
22http://dimacs.rutgers.edu/Challenges/
23http://www.graph500.org/
24http://www.graphdrawing.org/

graph features and therefore highly idealized. Samples gen-
erated from them are rarely representative and often exhibit
unwanted collateral features. A few selected features do not
characterize all relevant graphs, and samples need not even
be realistic. Preferential attachment, for example, gener-
ates scale-free networks with characteristic power-law degree
distribution, but only a tiny subset of them [91].
Two usage scenarios hold promise for better control of

input factors. On the one hand, coverage of the experimental
region can be controlled, for example, by rejecting samples
that are too close to existing ones, and on the other hand, a
small set of available network observations can be enlarged,
for example, by perturbing the benchmark instances using
network models that create additional instances in their vicin-
ity and thus reduce unknown biases. As a concrete example,
consider the generation of evolving social networks similar to
an observed one. An exponential random graph model [74]
can be fitted to the initial observation, and a stochastic
actor-oriented model [110] to its evolution. Given the esti-
mated parameters, any number of additional sequences can
be generated by applying the evolution model to samples
from the static model [14].

3.6 Trajectory Visualization
Trajectory visualization plays an important role in the anal-
ysis of movement [26]. It allows us to understand movement
patterns of various kinds of moving “objects” in a geospatial
context. Typical examples include moving vehicles, persons,
or animals. The latter is investigated in movement ecology
[108], with a growing amount of data available in databases.25

The analysis of spatio-temporal eye-tracking data is yet an-
other example, albeit with less data publicly available [63].
Whereas most types of trajectories are related to motion
in 2D or 3D space, there are other trajectories that live in
multidimensional state spaces, or phase spaces, where the
change of values can be seen as trajectories [43].
In studies, it is important to cover the whole parameter

space with the stimuli that are used, but often there is not
enough measured real-world data that exhibit the necessary
characteristics. Therefore, measurements can be used to
drive a realistic emulation of data. For example, a Markov
chain model produces synthetic trajectories from real-world
movement GPS data from birds [79] that can be used to
assess different visual direction encodings of trajectories.
The approach of training such an emulation model is not

always possible due to insufficient data. As an alternative,
methods are employed that generate purely synthetic data.
For example, there are closed-form descriptions of semantic-
based trajectories of moving objects that incorporate random
characteristics [92, 116].
A shortcoming of many trajectory generation methods is

that they only produce rather rough trajectories. Smooth
trajectories can be obtained by simulation that adopts at-
traction–repulsion interaction controlled by object distances
[101]. The analysis of movement data of multiple objects
often involves the extraction and abstraction of common
patterns, which could be visualized by using networks. Ac-
cording object movement data can be based on a traffic
simulation utilizing a given network [17]. Here, objects are
moving from a start location to a destination. In each time
step of the simulation, objects are generated, moved, or
removed, if they reached their destination.

25https://www.movebank.org/, http://www.uva-bits.nl/
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Eye-tracking data is conceptually similar to movement data
because both types of data describe trajectories in space and
time. However, there are a number of differences [4] that
require different generative models: eye-movement data are
recorded on a smaller spatial and temporal scale, and there
are “jumps” (saccades) between fixations that are extremely
fast and during which there is no cognitive processing. There
is a model to simulate eye-tracking data [32]. The only input
to this model is a list of coordinates that participants would
look at during an experiment. The rest of the gaze behavior is
emulated according to parametrized noise (random) functions
covering the spatio-temporal fixation perturbation (modeling
of a fixation), saccade velocity, and the control of the time
step and sampling rate.

3.7 Text Visualization
Many different disciplines work with texts. The text anal-
ysis and the concomitant visualizations differ by discipline
and according to the task at hand. Text analysis can be
concerned with comparatively “surface” type properties such
as the number or character of words, letters, or sentences,
or can take the form of deep linguistic analysis. The for-
mer is based on opportunistic data collection that often also
raises privacy/copyright issues, the models resulting from
deep linguistic analysis have traditionally been deterministic
generative rewriting systems and in recent years have been
augmented by machine learning systems.
Linguistic analyses involve complex theoretical concepts

and tend to span multiple layers of information and rep-
resentation. Within computational linguistics and natural
language processing (NLP), trees, and attribute-value matri-
ces (AVM) were established early on for the representation
of hierarchical and dependency relations. These tend to
be stored as nested lists, but can also be visualized as di-
rected acyclic graphs. A recent example of a sophisticated
infrastructure for the storage (banking), visualization, and
interactive working with complex linguistic analyses is the
INESS Infrastructure for the Exploration of Syntax and Se-
mantics [75, 99],26 which is part of CLARIN,27 the Common
Language Resources and Technology Infrastructure, which
in turn provides support and resources for research in the
humanities and social sciences that is concerned with digital
language data. INESS augments existing tree and AVM
representations with further visualization possibilities that
link and align information across complex structures and
support disambiguation. The structures banked in systems
like INESS range from manually constructed to fully auto-
matically generated. The automatic generation can be the
result of sophisticated manually constructed rewrite systems
(generative grammars), various machine learning algorithms,
or a combination of both. Linguistic information ranges
from comparatively simple information like Part-of-Speech
tags to complex semantic and pragmatic annotation, includ-
ing discourse structure. In recent years, several different
visualization systems for these subfields have begun to be
developed [16, 23, 128].28

Part-of-Speech tagging along with basic morphological
analysis can now be done effectively for a range of languages
(again, via rule-based systems, machine learning algorithms

26http://clarino.uib.no/iness
27https://www.clarin.eu/content/about-clarin
28http://ling.uni-konstanz.de/pages/home/butt/main/material/
lingvis/ for a more complete overview.

or a combination thereof) and tend to form the input for
visualizations used in other fields in the humanities and
social sciences as well as for computational applications.
However, the bulk of existing computational applications
and increasingly, new approaches within digital humanities
and social sciences work with linguistically unannotated
and opportunistically collected texts. The analyses focus
on surface properties such as word/sentence/text length or
type/token ratios. Word clouds [59] continue to be popular,
but more sophisticated visual analyses of text tend to look
at several different properties in comparison and do use
linguistic information [18, 60, 83, 84].
Work within the newly emergent fields of digital human-

ities and social sciences is also increasingly making use of
generative models for the clustering and classification of
texts and documents [1]. In particular, named-entity recog-
nition [111], sentiment analysis [88], and topic modeling are
being experimented with. Topic modeling in combination
with visualization methods has been particularly attractive
for literary analysis [54, 57, 76, 77]. One of the pioneer-
ing works for visual exploration of topic modeling results is
TIARA [122]. This tool utilizes a theme-river visualization
to show the temporal trends in topics. As it is one of the first
systems that enabled the visual exploration of the results of
the generative LDA model, showing the evolution of topics
over time, it is considered an inspiration for many applica-
tions that have evolved afterward. Such systems include
TextFlow [22], Paralleltopics [29], and ConToVi [33] as an
application for the digital social sciences.
Beyond the visualization of text and document properties,

work has recently begun to move toward providing interactive
visual analytic access to complex interdependencies between
linguistic and extralinguistic properties of the written ma-
terial. One example is a pixel visualization of properties
extracted from the annotated digital historical corpus of
Icelandic [98], whereby data is generated on the basis of the
annotation, but the visualization reflects a further level of
abstraction from the underlying data [103, 104]. Another
example is work conducted on understanding argumentation
in political debates [41], where a variety of different types of
information can be accessed, visualized, and explored inter-
actively. Many of the properties that are accessed from the
underlying data are the result of sophisticated linguistic and
computational analysis and have been produced via genera-
tive models of various kinds. These include both rewriting
systems and imitation systems.
In sum, text visualization spans a variety of different disci-

plines and tasks and works with various types of data, ranging
from opportunistically collected and manually annotated to
generatively and systematically produced. Concomitantly, a
large range of visualization options have also been developed
and continue to be developed, particularly in the emerging
fields of digital humanities and social sciences.

4. FUTURE DIRECTIONS
A highly interesting finding of our survey is that most
datasets used for the assessment of visualizations are based
on measurements, i.e., there is hardly any use of genera-
tive data models. We have pointed out the few directions
where there are generative models. However, these often
lack controllability in the sense that they would allow us to
generate collections of datasets that could be used in testing
visualization techniques for such a population of inputs.

http://clarino.uib.no/iness
https://www.clarin.eu/content/about-clarin
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Nevertheless, we argue that there is an increasing demand
for such controlled input generation if we want to make
progress with empirical methods in visualization research.
Therefore, we see the need for more and better use of gener-
ative data models in our community. In particular, we see
considerable demand for best-practice examples and guide-
lines for systematic generation of problem instances across
visualization domains. In the following, we highlight some
specific problem areas and concrete directions for future
research.

4.1 User Studies
User studies constitute the subdomain of visualization re-
search in which experimental design is most routine and
advanced. However, user studies often consider instances
obtained from generative models as the treatments. Since
subjects are confronted with visualization artifacts represent-
ing data, rather than the data itself, it should not be taken
for granted that the variation of factors is still systematic
after the samples have undergone the transformations by
the visualization technique. As a further complication, inter-
actions between the parameters of a generative model and
those of a visualization technique may introduce confounding
factors that are difficult to control. More research is there-
fore needed on what constitutes a suitable set of treatments,
and how to obtain them. Given the low cost of instance
generation, for instance, we see potential for the study of
methods that oversample data to be able to select sets of
visualization artifacts that are more suitable as a collection
of treatments.

4.2 Data and Parameter Characteristics
In most examples surveyed above, a key component in the
design of a generative model is the identification of data
characteristics to consider, and how to make them depend
on parameters. Especially in simulation, the implications of
parametrization may be anything but straightforward. The
parameters of a generative model are rarely independent.
Ignorance of dependencies among otherwise systematically
varied parameters may result in uneven or even incomplete
coverage of the experimental region. Controlled studies
therefore need to take into account also those interaction
effects that are introduced by, and possibly specific to, the
generator. Generative models are usually designed to yield
data samples with special characteristics; on the flip side, this
makes them prone to introduce systematic biases. Even if
the subtleties of a model specification are well understood, it
may be challenging to implement a generator that is correct
and efficient.

4.3 Visual Mapping Characteristics
We have argued that the main purpose of generative models
is to establish associations between input characteristics on
the one hand and performance or visualization outcomes on
the other. Standard experiments yield empirical response
curves, such as running time versus problem size. Sensitivity
of visualization outcomes to small perturbations in the input
and other relationships may be of interest, too, especially for
interactive systems. The design of generative models with
parameters specifically introduced for more general forms of
associations are therefore of genuine interest. We note that
the utility of response curves for dependent variables such
as representation accuracy or image characteristics extends

beyond the assessment of visualization systems as it may be
used to control the variation of factors in user studies more
systematically.

4.4 Scaling
When empirical data is scarce or too small to uncover the
behavior of a visualization technique, generating larger data
with similar characteristics requires some form of extrapola-
tion. Conversely, iterative development of resource-intensive
visualization techniques may require smaller data, again
with similar characteristics. Understanding normalization
and scaling effects may thus be an important issue in the
design of generative models. In large-scale simulations and
other high-throughput scenarios, we might also be interested
generators that emulate data from samples of a data stream.

4.5 Verification
Visualization algorithms should be subject to the same verifi-
cation process that is used in other components of the scien-
tific pipeline—this is also called verifiable visualization [35].
We expect that semi-automatic verification techniques, such
as fuzzing, could greatly benefit from generative models due
to extra knowledge about the parameter space.

4.6 Replication
Generative models facilitate follow-up experiments that may
shed additional light on findings all too often explained by
some plausible, but untested, interpretation of experimental
outcomes. Who can carry out replications, follow-ups, and
extensions depends on the availability of a generator. Sys-
tematic biases introduced by differences in implementation or
hardware environment are just as relevant as understanding
the level of documentation necessary to build an equivalent
generator. When is a set of generated instances needed to
reproduce results, what is the influence of random number
generators (the most basic generative models), and is there
a trade-off between the computational efficiency of a gen-
eration and its usability in an experiment? Archiving and
versioning generative models may be a task as huge as it is
for benchmark data.

5. CONCLUSION
We have made an argument for more use of generative data
models in controlled visualization experiments, not just user
studies, but also studies of technical performance. To support
our position, we have surveyed the state of generative data
models for several visualization domains. Based on our
findings, we have outlined areas of interest and directions for
future research.
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