Knowledge Representation for Language Engineering

Matthew Stone

short presentation for: Computer Linguistics II, Miriam Butt

Matthias Weisgerber U Konstanz, SFB 471 7. Mai 2004

www.matthias-weisgerber.de

O.P.Ian Ian

- 1. \mathcal{W} hat
- 2. \mathcal{W} hy
- 3. \mathcal{H}_{ow}
- 4. \mathcal{W} hom
- 5. \mathcal{H}_{ow}
- 6. WQuestions

11what?/hat?

Def. **Knowledge Representation**: the enterprise of specifying information about the **world** for use in **computer** systems p. 299

use

- conceptual results
- mathematical results
- computational results
- ... with the goal to **systematize** information.

22Why?Vhy?

(1) I would like coffee.

as an answer to one of the questions

- (2) Would you like a drink with dessert?
- (3) a. which of these flavors do you want?
 - b. What will you have to drink tomorrow morning?
 - c. Will you program for Team Coke or for Team Coffee?

Division

Semantics \longleftrightarrow pragmatics

 \downarrow

interpretation \longleftrightarrow meaning

. . .

33How? OW?

3 levels:

- knowledge level
- representations and algorithms
- implementation level

what the levels are responsible for:

	interpretation		\Rightarrow	meaning	
knowledge le-	words	and	links	Categories of	
vel	phrases	an-		Interpretation	
	notated	with			
	things	they			
	describe				
interpretation	symbols		algos	predicates,	
/ algo level				operators	
implementation	1				
level					

3 Knowledge Level

- pre-formal
- use knowledge from Semantics, Pragmatics, CogSci

Interpretation:

- words and phrases annotated with things they describe
- use ontology, develop a domain representation
- organize relationships

Meaning:

- generalizations from utterances to range of utterances
- Semantic knowledge as constraints (see (4), p. 311)
- use abstract concepts to accommodate different interpretations
- combination on knowledge level
- satisfy constraints

Representations and Algorithms Level

- Def: **Representation**s are formal structures that we can use to define computational operations but that we can also view as encoding information about the world.
- intended interpretation
- **algorithms**: abstract but explicit and mechanical descriptions of the operations that the implementation will carry out.
- together: a formal specification
- this intermediate level **mediates** between knowledge and inplementaion level

Interpretation

• symbols

main challenge: consistency

• words 'build' a sentence: syntax

• make info explicit

Meaning

- use of variables, instantiation
- interpretation: vars → values
- ex: a CSP solver (in implementation level notation)

```
solve([]).
solve([C|Cs]) :-
  clause(C,true),
  solve(Cs).
```

3 Implementation Level

• Def: **implementation**: how proposed representations and algorithms are to be realized in physical systems.

• Ex: PROLOG

level translation not too difficult . . .

4. Whom? hom?

Elements of interpretation

• objects ...

whole categories

- events
- space: place and path
- abstract objects

55How? OW?

• **Description logic**: concepts and roles . . .

• First Order Logic (FOL): terms, variables vs. predicates; sentences make claims.

Modal logic: FOL '+' modal operators

6. Conclusion C | USION

...in the end, you will have to collaborate with humans. Who has to learn, who has to adapt, ...?

THE END

typeset in LATEX, 23. November 2004