
Head-Driven Statistical Head-Driven Statistical
Models for Natural Models for Natural
Language ParsingLanguage Parsing

Sebastian Roth
Sebastian.Roth@uni-konstanz.de

The girl saw the monkey with the telescope.

The girl saw the monkey with the telescope.

S

NP VP

NP
saw

V

PP

with the telescope

the girl

the monkey

NP

S

NP VP

saw

V PP

with the telescope

the girl

the monkey

NP

The girl saw the monkey with the telescope.

The girl saw the monkey with the telescope.

Problem: Ambiguity

Combinatorial effects mean that even short sentences
can receive a considerable number of parses under a
wide-coverage grammar.

The girl saw the monkey with the telescope.

Problem: Ambiguity

Combinatorial effects mean that even short sentences
can receive a considerable number of parses under a
wide-coverage grammar.

Solution: Statistical Parser

Statistical parsing approaches tackle the ambiguity
problem by assigning a probability to each parse tree,
thereby ranking competing trees in order of plausibility.

Statistical Parsing:
 How to do it ?

Context-Free Grammar (CFG)
Hopcroft and Ullman (1979)

A context-free grammar is defined by a 4-Tuple (N, !, A, R):

N: Set of nonterminal symbols
!: Alphabet
A: Distinguished start symbol (element of N)

R: Finite set of rules of the form X -> ß where

"

X # N, ß # (NU!)

Exemplary CFG:

Phrase Structure Grammar

N (non-terminals): NP, VP, PP, AP, S, ...

! (alphabet): N,V,P,A,Det, Adv, ...

A (start symbol): S

R (rules): S --> NP VP

NP --> Det N

VP --> V NP (PP) ...

Probabilistic Context-Free Grammar
 (PCFG)

A Probabilistic CFG is defined by a 5-Tuple (N, !, A, R, D):

N: Set of nonterminal symbols
!: Alphabet
A: Distinguished start symbol (element of N)

R: Finite set of rules of the form X -> ß where

"

X # N, ß # (NU!)

D: Function assigning probabilities to each rule in R

D: Function assigning probabilities to each rule in R

This function expresses the probability P that the given
non-terminal X will be expanded to the sequence $.

"

P(X %$)
 or

"

P(X %$ | X)
This is the conditional probability of a given expansion
given the left-hand-side non-terminal X.

If we consider all the possible expansions of a non-
terminal, the sum of their probabilities must be 1.

A PCFG assigns a probability to each parse-tree T (i.e. each
derivation) of a sentence S.

The probability of a given tree-sentence-pair (T,S) derived by n
applications of context-free rules LHSi --> RHSi under the

PCFG is

"

P(T,S) = P(RHS
i

i=1

n

& |LHS
i
)

The resulting probability is both the joint probability of the parse
and the sentence, and also the probability of the parse P(T),
since the joint probability is defined as:

P(T,S) = P(T) P(S|T)

and P(S|T) = 1 since a parse tree includes all words of the
sentence.

Assigning Probabilities

How is it done ?

We need to assign a probability to each possible expansion $ of
each non-terminal X.

Simplest way:

Take a treebank (such as Penn TB), count the number of times
every expansion occurs, and normalize !

"

P(X %$ | X) =
Count(X %$)

Count(X %')
'

(
=
Count(X %$)

Count(X)

Assigning Probabilities

How is it done ?

Now that we have our PCFG... Now that we have our PCFG...

...let‘s have a look at the problems we face !

Now that we have our PCFG...

...let‘s have a look at the problems we face !

PCFGs make a fundamental independence assumption:

The expansion of any one non-terminal is independent of the
expansion of any other non-terminal.

Each PCFG rule is assumed to be independent of any other
rule, thus rule probabilities are just multiplied together.

Now that we have our PCFG...

...let‘s have a look at the problems we face !

- structural dependencies

- lexical dependencies

PCFGs make a fundamental independence assumption:

The expansion of any one non-terminal is independent of the
expansion of any other non-terminal.

Each PCFG rule is assumed to be independent of any other
rule, thus rule probabilities are just multiplied together.

This makes it impossible to model:

Structural dependencies:

(1) (a) She‘s able to take her baby to work with her

 (b) Uh, my wife worked until we had a family.

Structural dependencies:

(1) (a) She‘s able to take her baby to work with her

 (b) Uh, my wife worked until we had a family.

Switchboard Corpus:

Of 31,021 subjects of declarative sentences,
91% are pronouns
9% are lexical

Structural dependencies:

(1) (a) She‘s able to take her baby to work with her

 (b) Uh, my wife worked until we had a family.

Switchboard Corpus:

Of 31,021 subjects of declarative sentences,
91% are pronouns
9% are lexical

(2) (a) Some laws absolutely prohibit it.

 (b) All the people signed confessions.

Structural dependencies:

(1) (a) She‘s able to take her baby to work with her

 (b) Uh, my wife worked until we had a family.

Switchboard Corpus:

Of 31,021 subjects of declarative sentences,
91% are pronouns
9% are lexical

(2) (a) Some laws absolutely prohibit it.

 (b) All the people signed confessions.

Of 7,489 direct objects,
34% are pronouns
66% are lexical

Switchboard Corpus:

Of 31,021 subjects of declarative sentences,
91% are pronouns
9% are lexical

Of 7,489 direct objects,
34% are pronouns
66% are lexical

These dependencies would be captured if

P(NP -> Pronoun) vs P(NP -> Det Noun)

were dependent on whether the NP is subject or an object.

Switchboard Corpus:

Of 31,021 subjects of declarative sentences,
91% are pronouns
9% are lexical

Of 7,489 direct objects,
34% are pronouns
66% are lexical

These dependencies would be captured if

P(NP -> Pronoun) vs P(NP -> Det Noun)

were dependent on whether the NP is subject or an object.

This is the kind of probabilistic
dependency that a PCFG does not allow !

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.

PP [into Afghanistan] can be attached...

- either to the NP [more than 100,000 soldiers]
- or to the VP headed by [sent]

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.

PP [into Afghanistan] can be attached...

- either to the NP [more than 100,000 soldiers]
- or to the VP headed by [sent]

NP --> NP PP (NP-attachment) (3a)

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.
 (b) Moscow sent more than 100,000 soldiers into Afghanistan.

PP [into Afghanistan] can be attached...

- either to the NP [more than 100,000 soldiers]
- or to the VP headed by [sent]

NP --> NP PP (NP-attachment) (3a)

VP --> NP PP (VP-attachment) (3b)

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.
 (b) Moscow sent more than 100,000 soldiers into Afghanistan.

PP [into Afghanistan] can be attached...

- either to the NP [more than 100,000 soldiers]
- or to the VP headed by [sent]

NP --> NP PP (NP-attachment) (3a) ...67%

VP --> NP PP (VP-attachment) (3b) ...33%

Distribution of
NP/VP-attachment in
the 13 million words
AP newswire corpus
(Hindle&Rooth 1991)

Lexical dependencies:

(3) (a) Moscow sent more than 100,000 soldiers into Afghanistan.
 (b) Moscow sent more than 100,000 soldiers into Afghanistan.

PP [into Afghanistan] can be attached...

- either to the NP [more than 100,000 soldiers]
- or to the VP headed by [sent]

NP --> NP PP (NP-attachment) (3a) ...67%

VP --> NP PP (VP-attachment) (3b) ...33%

Correct attachment, as send subcategorizes for a destination.

PCFG does not know that !

How do we solve these problems ?
How do we solve these problems ?

Lexicalized PCFG

How do we solve these problems ?

Lexicalized PCFG

Each PCFG rule is augmented to identify one RHS
constituent to be its head daughter.

The headword for a node is then set to the
headword of its head daughter.

 All non-terminals are now of the format X(x) with

x = lexical information on the head daughter

We can think of a lexicalized grammars as a simple context-
free grammar with a lot more rules:

CFG Rule: VP --> V NP PP

 Lexicalized Grammar Rules:

 VP(throw) --> V(throw) NP(ball) PP(into)

 VP(send) --> V(send) NP(soldiers) PP(into)

 VP(send) --> V(send) NP(gift) PP(to)

 VP(put) --> V(put) NP(ball) PP(below)

... and many many many more

Problem:
How do we assign probabilities to all those rules ?

There is no corpus that is large enough to train such probabilities.
Count(X(x) -->ß) would be ZERO for most of the rules in our set.

Problem:
How do we assign probabilities to all those rules ?

There is no corpus that is large enough to train such probabilities.
Count(X(x) -->ß) would be ZERO for most of the rules in our set.

Solution:
Introduce simplifying independence assumptions

It is necessary to find a solution in between completely
lexicalized rules and the complete lexical independence of the
standard PCFG.

This is where the various models of lexicalized PCFGs differ in
the way which independence asssumptions they make.

Following example is a simplified version of the statistical models
which Charniak(1997) or Collins(1999/2003) use.

(see Jurafsky & Martin 2000, p. 460)

workers dumped sacks into a bin

DT(a) NN(bin)

P(into) NP(bin)NNS(sacks)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

VP(dumped)NP(workers)

S(dumped)

(4) (a) A lexicalized tree from Collins (1999)

In a standard (non-lexicalized) PCFG the probability of X being
expanded by rule (X --> $) was conditioned only by the syntactic
category of X:

"

P(X %$ | X)

Now let‘s introduce another conditioning factor:
The headword of node X (head(X))

"

P(X %$ | X,head(X))

workers dumped sacks into a bin

DT(a) NN(bin)

P(into) NP(bin)NNS(sacks)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

VP(dumped)NP(workers)

S(dumped)

(4) (a) A lexicalized tree from Collins (1999)

In a standard (non-lexicalized) PCFG the probability of X being
expanded by rule (X --> $) was conditioned only by the syntactic
category of X:

"

P(X %$ | X)

Now let‘s introduce another conditioning factor:
The headword of node X (head(X))

"

P(X %$ | X,head(X))

For the rule VP --> VBD NP PP we compute:

"

P(VP%VBD NP PP |VP,dumped)

For the rule VP --> VBD NP PP we compute:

"

P(VP%VBD NP PP |VP,dumped)

Now, want to know the actual probability of a VP headed by dumped
being expanded as VBD NP PP.
We‘ll get that by training our head-driven lexicalized PCFG on the
Brown Corpus:

For the rule VP --> VBD NP PP we compute:

"

P(VP%VBD NP PP |VP,dumped)

Now, want to know the actual probability of a VP headed by dumped
being expanded as VBD NP PP.
We‘ll get that by training our head-driven lexicalized PCFG on the
Brown Corpus:

"

P(VP%VBD NP PP |VP,dumped) =

=

"

Count(VP(dumped)%VBD NP PP)

Count(VP(dumped%$)
$

(
 =

= ?

For the rule VP --> VBD NP PP we compute:

"

P(VP%VBD NP PP |VP,dumped)

Now, want to know the actual probability of a VP headed by dumped
being expanded as VBD NP PP.
We‘ll get that by training our head-driven lexicalized PCFG on the
Brown Corpus:

"

P(VP%VBD NP PP |VP,dumped) =

=

"

Count(VP(dumped)%VBD NP PP)

Count(VP(dumped%$)
$

(
 =

=

"

6

9
 = 0.6666666666666666666666666666666666666...

workers dumped sacks into a bin

DT(a) NN(bin)

P(into) NP(bin)
NNS(sacks)

NNS(workers) VBD(dumped)

NP(sacks) PP(into)

VP(dumped)NP(workers)

S(dumped)

(4) (b) An incorrect parse tree of (4a) from Collins (1999)

NP(sacks)

How about this tree ?
This parse is apparently incorrect, so we want to know what
probability it gets assigned:

workers dumped sacks into a bin

DT(a) NN(bin)

P(into) NP(bin)
NNS(sacks)

NNS(workers) VBD(dumped)

NP(sacks) PP(into)

VP(dumped)NP(workers)

S(dumped)

(4) (b) An incorrect parse tree of (4a) from Collins (1999)

NP(sacks)

How about this tree ?
This parse is apparently incorrect, so we want to know what
probability it gets assigned:

"

P(VP%VBD NP |VP,dumped) =
Count(VP(dumped) %VBD NP)

Count(VP(dumped) %$)
$

(
=

workers dumped sacks into a bin

DT(a) NN(bin)

P(into) NP(bin)
NNS(sacks)

NNS(workers) VBD(dumped)

NP(sacks) PP(into)

VP(dumped)NP(workers)

S(dumped)

(4) (b) An incorrect parse tree of (4a) from Collins (1999)

NP(sacks)

How about this tree ?
This parse is apparently incorrect, so we want to know what
probability it gets assigned:

"

P(VP%VBD NP |VP,dumped) =
Count(VP(dumped) %VBD NP)

Count(VP(dumped) %$)
$

(
=

= 0/9 = 0

Conditioning on headwords lets us capture subcategorization
information and bears good results.

But we want more....

Conditioning on headwords lets us capture subcategorization
information and bears good results.

But we want more....

It would be great if we had a way of computing the probability of a
certain head.

In VP,dumped --> VBD NP PP it is completely irrelevant what kind
of PP we have.

Conditioning on headwords lets us capture subcategorization
information and bears good results.

But we want more....

It would be great if we had a way of computing the probability of a
certain head.

In VP,dumped --> VBD NP PP it is completely irrelevant what kind
of PP we have.

„What is the probability that a PP whose mother‘s head is dumped
has the head into ?“

"

P(head(X) | X,head(mother(X)))

Results from the Brown Corpus:

"

P(into |PP,dumped) =
Count(X(dumped) % ...PP(into)...

Count(X(dumped) % ...PP...)
$

(
=

2

9
= .22

Results from the Brown Corpus:

"

P(into |PP,dumped) =
Count(X(dumped) % ...PP(into)...)

Count(X(dumped) % ...PP...)
$

(
=

2

9
= .22

Let‘s check the results for the incorrect parse (PP(into) attached to sacks):

"

P(into |PP,sacks) =
Count(X(sacks) % ...PP(into)...)

Count(X(sacks)% ...PP...)
$

(
=

0

0
= ?

Again, head probabilities correctly predict that dumped is more likely to be
modified by into than is sacks.

Taking these dependencies into account, our final equation for calculating
the probability of a whole parse tree looks like this:

"

P(T,S) = P(X %$
n#T

& | X,head(X))) P(head(X) | X ,head(mother(X)))

Very simplified variant of Collins‘ parser

His models also include:

- distinction of arguments(adjuncts)
- distance measures
- punctuation
- methods for handling coordination
- traces and movement

Evaluation

PARSEVAL measures(Black et al. 1991):

"

labeled recall:=
of correct constituents in candidate parse of S

of correct constituents in treebank parse of S

"

labeled precision:=
of correct constituents in candidate parse of S

of total constituents in candidate parse of S

"

cross - brackets := # of crossed brackets

(Number of constituents for which the treebank has a bracketing such
as ((AB) C) and the candidate parse has bracketing (A (B C)))

Evaluation Results for the parser from Collins(2000):

Labeled Recall: 90.1 %

Labeled Precision: 90.4 %

Av. Crossed Brackets: 0.73

0 Crossed Brackets: 70.7 %

<=2 Crossed Brackets: 89.6 %

QUESTIONS
&

DISCUSSION

