
Textverarbeitung mit Perl
Dozentin: Miriam Butt

Universität Konstanz, Sommer 2009
Dokument erstellt von Veronika Walther

Perl – Syntax II

Numeric and string comparison operators

Comparison Numeric String
Equal == eq
Not equal != ne
Less than < lt
Greater than > gt
Less than or equal to <= le
Greater than or equal to >= ge
Order $a <=> $b $a cmp $b

(spaceship)

The if Control Structure

• if (boolean value/Bedingungsausdruck) {
if this is true, do what is said in this block
}

elsif (boolean value/Bedingungsausdruck) {
but if this is true, do what is said here
}

elsif (boolean value/Bedingungsausdruck) {
and if this is true, do what is said in this block
}

.

.

.

else {
if nothing of the above is true, do what is said here
}

• by adding ‘ !’ (not) you can tell perl to do something, if a condition is not true:
if (! boolean value/Bedingungsausdruck) {
if the condition is not (!) true, do what is said in this block
}

1

The while Control Structure

• a looping structure/Schleifenstruktur

• while (truth value/Bedingung) {
while there is something in the loop, do what is said here
}

Arrays

• @array = qw/ fred barney wilma /;

• an array is a list of values

• the first place in an array is 0

• to refer to one value of an array: $array[place in array] (so here $array[0] would be fred)

• to refer to the last value in an array: $array[$#array]

• pop

– takes last element off of an array

– pop @array; (so the array contains fred and barney only)

• push

– adds an element/list of elements to the end of an array

– push @array, $dino; (now the array contains fred, barney and dino)

• shift

– same as pop, but at the start of an array

– shift @array; (the array contains barney and dino now)

• unshift

– same as push, but at the start of an array

– unshift @array, $fred; (now the array contains fred, barney and dino again)

• the foreach control strucutre

– foreach $array (@array) {
do whatever is said here for each element $array of @array
};

• reverse

– @reversed = reverse @array; (@reversed contains elements of @array in reversed
order)

2

• sort

– @sorted = sort @array; (@sorted contains elements of @array in sorted order)

Subroutines

• user-defined functions

• can be used many times in one program

• are global

• can be anywhere in the program

• if there are two subroutines with the same name, the later one overwrites the earlier one

• sub sum_of_fred_and_barney {
print “Hey, you called the sum_of_fred_and_barney subroutine!\n”;
$fred + $barney; # that’s the return value
}

• you can use the subroutine as follows:
$fred = 3;
$barney = 4;
$wilma = &sum_of_fred_and_barney; # $wilma gets 7
print “\$wilma is $wilma.\n”;
$betty = 3 * &sum_of_fred_and_barney; # $betty gets 21
print “\$betty is $betty.\n”;

• the output is:
Hey, you called the sum_of_fred_and_barney subroutine!
$wilma is 7.
Hey, you called the sum_of_fred_and_barney subroutine!
$betty is 21.

• as you can see, the subroutine is reused in this program

The foreach Control Structure

• to process an entire array/list

• foreach $array (@array) {
$array = “\t$array”; # put a tab in front of each element of @array
$array .= “\n”; # put a newline on the end of each
}
print “The names are: \n”, @array; # each one is indented, on its own line

(aus Learning Perl/Einführung in Perl, O‘Reilly)

3

