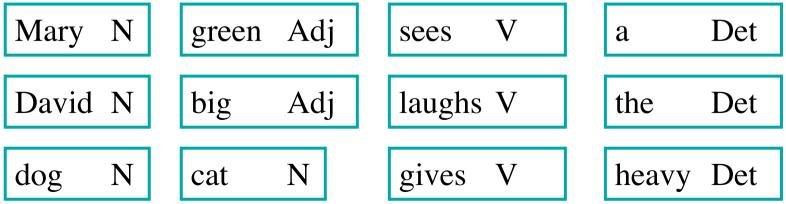
Parsing Components

Miriam Butt October 2002 We'll go through the following basic parsing components:

- Phrase Structure Rules for a given set of sentences
- Possible Parsing Strategies/Algorithms
- Lexical Knowledge (Subcategorization Frames, POS, World Knowledge)
- Morphological Analysis
- Interaction of Morphology with Syntax


Recall our first sample set for English.

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $NP \rightarrow Det (ADJ) N$

Plus some Lexical Items:

Phrase Structure Rules are *Regular Expressions*

Some Notation

() denotes an optional element

* The Kleene star allows for 0 to infinitely many elements

+ allows for 1 to infinitely many elements

What sentences can this small grammar generate/parse?

What sentences can this small grammar not deal with?

How can we change the grammar to account for:

Mary laughs

Mary sees David.

Mary sees a big green cat.

XLE contains a Toy English Grammar

This grammar does not allow for PP-Attachment ambiguity.

The girl saw the monkey with the telescope.

How can we change the grammar to give us two parses, rather than one?

The Ambiguity Problem Continued

Categorial Ambiguity

Flying planes can be dangerous.

V/Adj

Time flies like an arrow.

N V Adv Det N

Fruit flies like a banana.

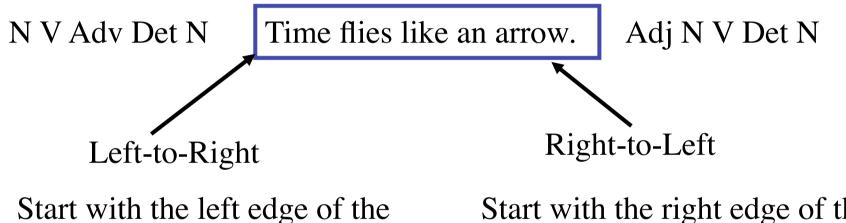
N N V Det N

The Ambiguity Problem Continued

This kind of Ambiguity is difficult to deal with.

One helpful component is a good POS tagger/guesser.

Sometimes differing Parsing Strategies can also help.

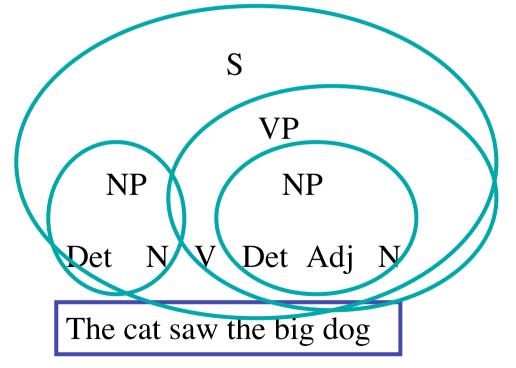

Parsing Strategies

Starting with a given string and a given grammar, a parser has several strategic options.

Left-to-Right vs. Right-to-Left

Bottom-Up vs. Top-Down

Parsing Strategies



string and work rightwards.

Start with the right edge of the string and work leftwards.

Parsing Strategies Bottom Up

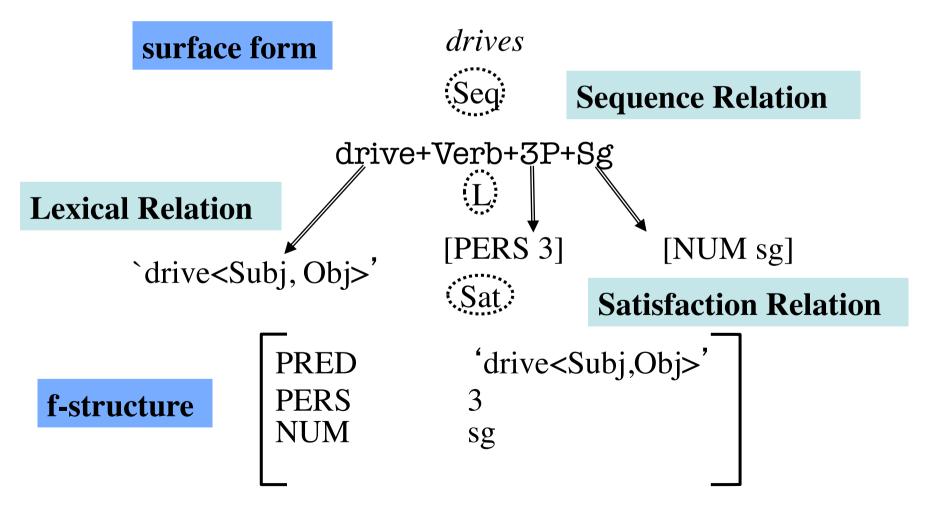
Start with the terminal elements, try to identify their POS and build them into constituents permitted by the grammar.

Parsing Strategies Top down

Start with the top level phrase structure rule, expand it and try to fit the terminal elements with a possible expansion of the phrase structure rule.

1. $NP \rightarrow Det Adj N$ 2. $NP \rightarrow N$ 3. $NP \rightarrow Det N$ 1. $VP \rightarrow V$ 2. $VP \rightarrow V NP$ 3. $NP \rightarrow V NP$ 3. $VP \rightarrow V NP$ 3. $VP \rightarrow V NP$ 3. $VP \rightarrow V NP$ 4. $VP \rightarrow V NP$ 5. $VP \rightarrow V$ 5. $VP \rightarrow V$ 5. $VP \rightarrow V$ 5. $VP \rightarrow VP \rightarrow V$ 5.

Lexicons


Typically Contain:

- Category Information (Terminal Node in Tree)
- Context Sensitive Featural Information
- Subcategorization Information
- Semantics (sometimes)

FST Morphological Analyzers

The morphology-syntax interface for an LFG grammar:

