
MLP,	
 Ling	
 331	

	

Solutions	
 to	
 Exercise	
 1	

	

	

1 Tokenization

Goal: Tokenization is used to identify all tokens, i.e., “word-like chunks” (Beesley,
Karttunen.2003:422) such as words, multi words expressions (MWE), and punctuations
in a text. I

How does it work? In languages like English and German, words can be understood as
strings in between two empty spaces (“white-space strategy”). Regarding multi-words
expressions, examples like New York, New Yorker, as well as Mr. Miller or Krueger-
Johansson need to be captured. With respect to punctuations, it is not only commas, semi-
colons, periods and alike, but also abbreviations like e.g., i.e., or U.S.A.

The white-space strategy does not work for languages that do not have special
characters for word boundaries (e.g. Chinese, Japanese or Classical Latin). These
needalternative ways to identify word boundaries. Chinese often uses a mixture of
different strategies, including, but not limited to, statistics, n-gram segmentation and
lexicons. Generally, the maximum match strategy is used. This strategy is illustrated
on the basis of the English example thetabledownthere in J&M.

Concretely, tokenization is a problem that has the complexity of a finite-state machine
and can thus be dealt with well via a FSA. An example is the approach by Beesley
and Karttunen we discussed in class.

The tokenizer takes strings or entire files of text as an input and transduces it to get one
token per line as an output. First of all, the program needs definitions of white spaces,
which can be an empty space, tab or a new line. Also, special characters (e.g. “, §, $,], },
etc.) and punctuations (i.e., ., ,, `,`,’) need to be defined, as well as alphabetical characters.
With the help from regular expressions, words can be defined easily, namely by stating
that a word consists of at least one character, whereby a character can be both
alphabetical and punctuation symbols. Same holds for abbreviations, which at least
consist of one letter and one dot. After having defined both upper and lower case letters, a
regular expression would look like [letter \.]+, where letter is a variable for the letter-
definition and “\” protects the following dot. Since the expression is put in brackets and
the Kleene + follows this expression, and abbreviation consists of at least one letter
followed by a dot. Infinite repetitions of this sequence are allowed to follow.

Definite abbreviations such as Mrs., Ms., Mr., Dr., Ltd., etc. need to be defined
separately. Various numbers such as integers and floating numbers both positive and
negative, again, can be expressed by regular expressions. Hence, such an expression
would show that a number consist of at least one digit, plus/minus sign, or a separating
sign and at least one following digit. Thus, possible results could be: +2; -2; +.23; -,4;
6.987;-5.0; +2,87, etc. Notice that with this regular expression multi-figure integers are
illegal.
	

Multi-­‐word	
 expressions	
 are	
 a	
 bit	
 more	
 demanding;	
 covering	
 MWE	
 by	
 simply	
 stating	

them	
 in	
 a	
 variable,	
 would	
 be	
 very	
 complex	
 since	
 inflected	
 forms	
 such	
 as	
 New	
 Yorker	

from	
 New	
 York	
 would	
 need	
 an	
 extra	
 listing,	
 too,	
 in	
 order	
 not	
 to	
 split	
 up	
 the	
 actual	

MWE	
 into	
 New	
 Yorker	
 +	
 er.	
 Hence,	
 one	
 regular	
 expression	
 which	
 should	
 cover	
 such	

cases	
 would	
 recognize	
 MWE	
 and	
 and	
 would	
 allow	
 additional	
 characters	
 up	
 to	
 a	

white	
 space.	
 	

	

Tokenized	
 texts	
 consider	
 all	
 those	
 restrictions	
 and	
 rules	
 and	
 generally	
 output	
 one	

token	
 per	
 line.	
 	

	

Concrete	
 Output:	
 	
 The	
 Xerox	
 tokenization	
 tool	
 works	
 well	
 and	
 as	
 expected.	
 	
 The	

possessive	
 ‘s	
 is	
 treated	
 as	
 an	
 individual	
 token.	
 	
 This	
 is	
 standard	
 in	
 NLP	
 approaches.	
 	

	

	

2 POS Tagging

Goal: Provide information about word class/token type for individual tokens in a
text.

How does it work? 1) A tag set needs to be defined. These tend to be language
specific and require and understanding of the linguistic structure. Famous tagsets are
the Penn Treebank tagset, the CLAWS tagset and the German STTS tagset.

One can tag a corpus manually (expensive and prone to human error). One can use
automatic methods which can be rule-based or using stochastic methods or a
combination of both. The Brill tagger is a famous tagger that used to be primarily
rule-based. Most current taggers are based on machine learning algorithms, factoring
in information about syntactic distribution via a calculation of ngrams.

Concrete Output: The outputs are fairly good for both English and German.
However, the taggers do make mistakes.

English:

 age
 age +NOUN
 of
 of +PREP
 one
 one +PRONONE

“one” is not a pronoun, but a number.

 the
 the +DET
 instant
 instant +ADJ

“instant” is a noun

 whose
 who +DETREL
 name
 name +VPRES

“name” is a noun

German:

einem
 ein +ART
Jahr
 Jahr +NOUN

“einem” is a number.

überlebte
 überleben +ADJA
Harry
 Harry +NOUN

“überlebte” is a verb

noch
 noch +ADV
Angst
 angst +ADV

“Angst” is a noun.

Generally, only the first part of a compound is returned. A good treatment of compounding
remains a problem for even the best POS taggers.

3 Morphological Analysis

Why useful? In deep NLP one would like to have more information about a word as
provided by the morphology. In QA systems, morphological information may
provide crucial information for inferencing (if something happened to many cats
(plural) then one can infer that it happened to at least one cat (singular)). For shallow
NLP one would like to be able to abstract away from the different morphological
realizations of a word and do information retrieval similarly, for example, for dog vs.
dogs.

Porter Stemmer: Porter Stemmers main advantage is their ease of usage. They are
both easy to understand and to implement. They are also computationally efficient,
given the simplicity of their code. They are not linguistically “correct”, but they
efficiently and quickly provide some kind of a stem for a family words. This “stem”

can then be used for information retrieval purposes.

Disadvantage is that information coming from the morphology is thrown away and
that the simplicity of the code makes them error prone. One has cases of 	

overstemming	
 (e.g.	
 wander	
 →	
 wand),	
 or	
 missteming	
 (e.g.	
 relativity	
 →	
 relative)	
 or	

understemming	
 (e.g.,	
 greatest	
 →	
 greatest)	
 and	
 it	
 also	
 does	
 not	
 recognize	
 proper	

names,	
 as	
 Harry	
 in	
 the	
 sample	
 text.	
 	

	

Xerox	
 tools:	
 	
 The	
 morphological	
 analysis	
 by	
 Xerox	
 uses	
 a	
 finite-­‐state	
 two-­‐level	

morphological	
 analysis.	
 	
 	
 The	
 output	
 is	
 mainly	
 as	
 expected.	
 It	
 recognized	
 proper	

names,	
 although	
 it	
 could	
 not	
 identify	
 the	
 masculine	
 gender	
 of	
 Voldemort.	
 This,	

however,	
 was	
 expected,	
 too,	
 since	
 the	
 morphological	
 analysis	
 does	
 not	
 take	
 into	

account	
 the	
 analyses	
 of	
 the	
 current	
 neighbors.	
 Unexpectedly,	
 the	
 analyzer	
 defined	

the	
 possessive	
 ’s	
 by	
 ‘s	
 +open+NOUN.	
 Past	
 tense	
 verbs	
 are	
 ambiguously	
 adjectives	
 in	

some	
 cases	
 to	
 reflect	
 instances	
 like	
 The	
 car	
 was	
 completely	
 destroyed.	

	

	

3 Parsing

Grammar Fragment

German: Only the a sentence can be parsed.

Lexical entries need to be added for: bellen

English: None of the sentences can be parsed.

Lexical entries need to be added for: sees, bark.

Grammar Update:

S à NP VP
NP à (D) ADJ* N PP*
VP à V (NP) PP*
P à P NP

Kleene Expressions

Kleene *: strings of 0 to infinite elements that precede the Kleene *.
Kleene	
 +:	
 strings	
 of	
 1	
 to	
 infinite	
 elements	
 which	
 precede	
 the	
 Kleene	
 +.	

Parsing Strategies

This was done more or less right by everybody (no absolutely “right” solution).

