
MLP,	 Ling	 331	
	

Solutions	 to	 Exercise	 1	
	
	
1 Tokenization

Goal: Tokenization is used to identify all tokens, i.e., “word-like chunks” (Beesley,
Karttunen.2003:422) such as words, multi words expressions (MWE), and punctuations
in a text. I

How does it work? In languages like English and German, words can be understood as
strings in between two empty spaces (“white-space strategy”). Regarding multi-words
expressions, examples like New York, New Yorker, as well as Mr. Miller or Krueger-
Johansson need to be captured. With respect to punctuations, it is not only commas, semi-
colons, periods and alike, but also abbreviations like e.g., i.e., or U.S.A.

The white-space strategy does not work for languages that do not have special
characters for word boundaries (e.g. Chinese, Japanese or Classical Latin). These
needalternative ways to identify word boundaries. Chinese often uses a mixture of
different strategies, including, but not limited to, statistics, n-gram segmentation and
lexicons. Generally, the maximum match strategy is used. This strategy is illustrated
on the basis of the English example thetabledownthere in J&M.

Concretely, tokenization is a problem that has the complexity of a finite-state machine
and can thus be dealt with well via a FSA. An example is the approach by Beesley
and Karttunen we discussed in class.

The tokenizer takes strings or entire files of text as an input and transduces it to get one
token per line as an output. First of all, the program needs definitions of white spaces,
which can be an empty space, tab or a new line. Also, special characters (e.g. “, §, $,], },
etc.) and punctuations (i.e., ., ,, `,`,’) need to be defined, as well as alphabetical characters.
With the help from regular expressions, words can be defined easily, namely by stating
that a word consists of at least one character, whereby a character can be both
alphabetical and punctuation symbols. Same holds for abbreviations, which at least
consist of one letter and one dot. After having defined both upper and lower case letters, a
regular expression would look like [letter \.]+, where letter is a variable for the letter-
definition and “\” protects the following dot. Since the expression is put in brackets and
the Kleene + follows this expression, and abbreviation consists of at least one letter
followed by a dot. Infinite repetitions of this sequence are allowed to follow.

Definite abbreviations such as Mrs., Ms., Mr., Dr., Ltd., etc. need to be defined
separately. Various numbers such as integers and floating numbers both positive and
negative, again, can be expressed by regular expressions. Hence, such an expression
would show that a number consist of at least one digit, plus/minus sign, or a separating
sign and at least one following digit. Thus, possible results could be: +2; -2; +.23; -,4;
6.987;-5.0; +2,87, etc. Notice that with this regular expression multi-figure integers are
illegal.
	
Multi-‐word	 expressions	 are	 a	 bit	 more	 demanding;	 covering	 MWE	 by	 simply	 stating	

them	 in	 a	 variable,	 would	 be	 very	 complex	 since	 inflected	 forms	 such	 as	 New	 Yorker	
from	 New	 York	 would	 need	 an	 extra	 listing,	 too,	 in	 order	 not	 to	 split	 up	 the	 actual	
MWE	 into	 New	 Yorker	 +	 er.	 Hence,	 one	 regular	 expression	 which	 should	 cover	 such	
cases	 would	 recognize	 MWE	 and	 and	 would	 allow	 additional	 characters	 up	 to	 a	
white	 space.	 	
	
Tokenized	 texts	 consider	 all	 those	 restrictions	 and	 rules	 and	 generally	 output	 one	
token	 per	 line.	 	
	
Concrete	 Output:	 	 The	 Xerox	 tokenization	 tool	 works	 well	 and	 as	 expected.	 	 The	
possessive	 ‘s	 is	 treated	 as	 an	 individual	 token.	 	 This	 is	 standard	 in	 NLP	 approaches.	 	
	
	
2 POS Tagging

Goal: Provide information about word class/token type for individual tokens in a
text.

How does it work? 1) A tag set needs to be defined. These tend to be language
specific and require and understanding of the linguistic structure. Famous tagsets are
the Penn Treebank tagset, the CLAWS tagset and the German STTS tagset.

One can tag a corpus manually (expensive and prone to human error). One can use
automatic methods which can be rule-based or using stochastic methods or a
combination of both. The Brill tagger is a famous tagger that used to be primarily
rule-based. Most current taggers are based on machine learning algorithms, factoring
in information about syntactic distribution via a calculation of ngrams.

Concrete Output: The outputs are fairly good for both English and German.
However, the taggers do make mistakes.

English:

 age
 age +NOUN
 of
 of +PREP
 one
 one +PRONONE

“one” is not a pronoun, but a number.

 the
 the +DET
 instant
 instant +ADJ

“instant” is a noun

 whose
 who +DETREL
 name
 name +VPRES

“name” is a noun

German:

einem
 ein +ART
Jahr
 Jahr +NOUN

“einem” is a number.

überlebte
 überleben +ADJA
Harry
 Harry +NOUN

“überlebte” is a verb

noch
 noch +ADV
Angst
 angst +ADV

“Angst” is a noun.

Generally, only the first part of a compound is returned. A good treatment of compounding
remains a problem for even the best POS taggers.

3 Morphological Analysis

Why useful? In deep NLP one would like to have more information about a word as
provided by the morphology. In QA systems, morphological information may
provide crucial information for inferencing (if something happened to many cats
(plural) then one can infer that it happened to at least one cat (singular)). For shallow
NLP one would like to be able to abstract away from the different morphological
realizations of a word and do information retrieval similarly, for example, for dog vs.
dogs.

Porter Stemmer: Porter Stemmers main advantage is their ease of usage. They are
both easy to understand and to implement. They are also computationally efficient,
given the simplicity of their code. They are not linguistically “correct”, but they
efficiently and quickly provide some kind of a stem for a family words. This “stem”

can then be used for information retrieval purposes.

Disadvantage is that information coming from the morphology is thrown away and
that the simplicity of the code makes them error prone. One has cases of 	
overstemming	 (e.g.	 wander	 →	 wand),	 or	 missteming	 (e.g.	 relativity	 →	 relative)	 or	
understemming	 (e.g.,	 greatest	 →	 greatest)	 and	 it	 also	 does	 not	 recognize	 proper	
names,	 as	 Harry	 in	 the	 sample	 text.	 	
	
Xerox	 tools:	 	 The	 morphological	 analysis	 by	 Xerox	 uses	 a	 finite-‐state	 two-‐level	
morphological	 analysis.	 	 	 The	 output	 is	 mainly	 as	 expected.	 It	 recognized	 proper	
names,	 although	 it	 could	 not	 identify	 the	 masculine	 gender	 of	 Voldemort.	 This,	
however,	 was	 expected,	 too,	 since	 the	 morphological	 analysis	 does	 not	 take	 into	
account	 the	 analyses	 of	 the	 current	 neighbors.	 Unexpectedly,	 the	 analyzer	 defined	
the	 possessive	 ’s	 by	 ‘s	 +open+NOUN.	 Past	 tense	 verbs	 are	 ambiguously	 adjectives	 in	
some	 cases	 to	 reflect	 instances	 like	 The	 car	 was	 completely	 destroyed.	
	
	
3 Parsing

Grammar Fragment

German: Only the a sentence can be parsed.

Lexical entries need to be added for: bellen

English: None of the sentences can be parsed.

Lexical entries need to be added for: sees, bark.

Grammar Update:

S à NP VP
NP à (D) ADJ* N PP*
VP à V (NP) PP*
P à P NP

Kleene Expressions

Kleene *: strings of 0 to infinite elements that precede the Kleene *.
Kleene	 +:	 strings	 of	 1	 to	 infinite	 elements	 which	 precede	 the	 Kleene	 +.	

Parsing Strategies

This was done more or less right by everybody (no absolutely “right” solution).

