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1 Tokenization 
 
Goal: Tokenization is used to identify all tokens, i.e., “word-like chunks” (Beesley, 
Karttunen.2003:422) such as words, multi words expressions (MWE), and punctuations 
in a text. I 
 
How does it work?  In languages like English and German, words can be understood as 
strings in between two empty spaces (“white-space strategy”). Regarding multi-words 
expressions, examples like New York, New Yorker, as well as Mr. Miller or Krueger-
Johansson need to be captured. With respect to punctuations, it is not only commas, semi-
colons, periods and alike, but also abbreviations like e.g., i.e., or U.S.A.  
 
The white-space strategy does not work for languages that do not have special 
characters for word boundaries (e.g. Chinese, Japanese or Classical Latin). These 
needalternative ways to identify word boundaries. Chinese often uses a mixture of 
different strategies, including, but not limited to, statistics, n-gram segmentation and 
lexicons.  Generally, the maximum match strategy is used.  This strategy is illustrated 
on the basis of the English example thetabledownthere in J&M.  
 
Concretely, tokenization is a problem that has the complexity of a finite-state machine 
and can thus be dealt with well via a FSA.  An example is the approach by Beesley 
and Karttunen we discussed in class. 
 
The tokenizer takes strings or entire files of text as an input and transduces it to get one 
token per line as an output. First of all, the program needs definitions of white spaces, 
which can be an empty space, tab or a new line. Also, special characters (e.g. “, §, $, ], }, 
etc.) and punctuations (i.e., ., ,, `,`,’) need to be defined, as well as alphabetical characters. 
With the help from regular expressions, words can be defined easily, namely by stating 
that a word consists of at least one character, whereby a character can be both 
alphabetical and punctuation symbols. Same holds for abbreviations, which at least 
consist of one letter and one dot. After having defined both upper and lower case letters, a 
regular expression would look like [letter \.]+, where letter is a variable for the letter-
definition and “\” protects the following dot. Since the expression is put in brackets and 
the Kleene + follows this expression, and abbreviation consists of at least one letter 
followed by a dot. Infinite repetitions of this sequence are allowed to follow.  
 
Definite abbreviations such as Mrs., Ms., Mr., Dr., Ltd., etc. need to be defined 
separately. Various numbers such as integers and floating numbers both positive and 
negative, again, can be expressed by regular expressions. Hence, such an expression 
would show that a number consist of at least one digit, plus/minus sign, or a separating 
sign and at least one following digit. Thus, possible results could be: +2; -2; +.23; -,4; 
6.987;-5.0; +2,87, etc. Notice that with this regular expression multi-figure integers are 
illegal.  
	  
Multi-‐word	  expressions	  are	  a	  bit	  more	  demanding;	  covering	  MWE	  by	  simply	  stating	  



them	  in	  a	  variable,	  would	  be	  very	  complex	  since	  inflected	  forms	  such	  as	  New	  Yorker	  
from	  New	  York	  would	  need	  an	  extra	  listing,	  too,	  in	  order	  not	  to	  split	  up	  the	  actual	  
MWE	  into	  New	  Yorker	  +	  er.	  Hence,	  one	  regular	  expression	  which	  should	  cover	  such	  
cases	  would	  recognize	  MWE	  and	  and	  would	  allow	  additional	  characters	  up	  to	  a	  
white	  space.	  	  
	  
Tokenized	  texts	  consider	  all	  those	  restrictions	  and	  rules	  and	  generally	  output	  one	  
token	  per	  line.	  	  
	  
Concrete	  Output:	  	  The	  Xerox	  tokenization	  tool	  works	  well	  and	  as	  expected.	  	  The	  
possessive	  ‘s	  is	  treated	  as	  an	  individual	  token.	  	  This	  is	  standard	  in	  NLP	  approaches.	  	  
	  
	  
2 POS Tagging 
 
Goal:  Provide information about word class/token type for individual tokens in a 
text.  
 
How does it work?   1) A tag set needs to be defined.  These tend to be language 
specific and require and understanding of the linguistic structure. Famous tagsets are 
the Penn Treebank tagset, the CLAWS tagset and the German STTS tagset.  
 
One can tag a corpus manually (expensive and prone to human error).  One can use 
automatic methods which can be rule-based or using stochastic methods or a 
combination of both.  The Brill tagger is a famous tagger that used to be primarily 
rule-based.  Most current taggers are based on machine learning algorithms, factoring 
in information about syntactic distribution via a calculation of ngrams.  
 
Concrete Output:  The outputs are fairly good for both English and German. 
However, the taggers do make mistakes.  
 
English: 
 
  age 
        age +NOUN 
    of 
        of +PREP 
    one 
        one +PRONONE 
 
“one” is not a pronoun, but a number.  
 
  the 
        the +DET 
    instant 
        instant +ADJ 
 
“instant” is a noun 
 
 



 
 
 
    whose 
        who +DETREL 
 name 
        name +VPRES 
 
“name” is a noun 
 
 
German: 
 
einem 
  ein +ART  
Jahr 
  Jahr +NOUN 
 
“einem” is a number. 
 
überlebte 
 überleben +ADJA  
Harry 
 Harry +NOUN 
 
“überlebte” is a verb 
 
noch 
 noch +ADV 
Angst 
 angst +ADV 
 
“Angst” is a noun. 
 
Generally, only the first part of a compound is returned.  A good treatment of compounding 
remains a problem for even the best POS taggers. 
 
 
3 Morphological Analysis 
 
Why useful?  In deep NLP one would like to have more information about a word as 
provided by the morphology.  In QA systems, morphological information may 
provide crucial information for inferencing (if something happened to many cats 
(plural) then one can infer that it happened to at least one cat (singular)). For shallow 
NLP one would like to be able to abstract away from the different morphological 
realizations of a word and do information retrieval similarly, for example, for dog vs. 
dogs.  
 
Porter Stemmer:  Porter Stemmers main advantage is their ease of usage. They are 
both easy to understand and to implement. They are also computationally efficient, 
given the simplicity of their code. They are not linguistically “correct”, but they 
efficiently and quickly provide some kind of a stem for a family words. This “stem” 



can then be used for information retrieval purposes.  
 
Disadvantage is that information coming from the morphology is thrown away and 
that the simplicity of the code makes them error prone.  One has cases of 	  
overstemming	  (e.g.	  wander	  →	  wand),	  or	  missteming	  (e.g.	  relativity	  →	  relative)	  or	  
understemming	  (e.g.,	  greatest	  →	  greatest)	  and	  it	  also	  does	  not	  recognize	  proper	  
names,	  as	  Harry	  in	  the	  sample	  text.	  	  
	  
Xerox	  tools:	  	  The	  morphological	  analysis	  by	  Xerox	  uses	  a	  finite-‐state	  two-‐level	  
morphological	  analysis.	  	  	  The	  output	  is	  mainly	  as	  expected.	  It	  recognized	  proper	  
names,	  although	  it	  could	  not	  identify	  the	  masculine	  gender	  of	  Voldemort.	  This,	  
however,	  was	  expected,	  too,	  since	  the	  morphological	  analysis	  does	  not	  take	  into	  
account	  the	  analyses	  of	  the	  current	  neighbors.	  Unexpectedly,	  the	  analyzer	  defined	  
the	  possessive	  ’s	  by	  ‘s	  +open+NOUN.	  Past	  tense	  verbs	  are	  ambiguously	  adjectives	  in	  
some	  cases	  to	  reflect	  instances	  like	  The	  car	  was	  completely	  destroyed.	  
	  
	  
3 Parsing 
 
Grammar Fragment 
 
German:  Only the a sentence can be parsed.  
 
Lexical entries need to be added for:  bellen 
 
 
English:   None of the sentences can be parsed. 
 
Lexical entries need to be added for:  sees, bark. 
 
 
Grammar Update: 
 
S à NP VP 
NP à (D) ADJ* N PP* 
VP à V (NP) PP* 
P à P NP 
 
 
Kleene Expressions 
 
Kleene *: strings of 0 to infinite elements that precede the Kleene *.  
Kleene	  +:	  strings	  of	  1	  to	  infinite	  elements	  which	  precede	  the	  Kleene	  +.	   
 
 
 
Parsing Strategies 
 
This was done more or less right by everybody (no absolutely “right” solution). 


