Presupposition in DRT

Slides by Patrick Blackburn & Johan Bos (malaga4.ppt) and slightly modified by Maribel Romero (MR)

Ling391: Advanced Computational Semantics

PRESUPPOSITION

Presupposition

- Presupposition vs. Entailment
- Look at some examples of presupposition
- Look at the typical problems associated with presuppositions
- Concentrate on a DRT based approach due to Rob van der Sandt

What is presupposition?

- It is hard to pin down precisely what presuppositions are or how they behave
- Presuppositions are a bit like entailment but not quite...

EntailmentEntailmentConsider:.Consider:Vincent has a car.
A car is a vehicle..Vincent has a red car.This entails:.This entails:Vincent has a vehicle..This entails:

Entailment and negation

Entailments are typically not preserved under negation.

Entailment

Consider:

Vincent has no car. A car is a vehicle.

This does not entail:

Vincent has a vehicle.

11

Entailment or presupposition

- We call implications preserved under negation presuppositions
- We call implications not preserved under negation **entailments**

Presupposition triggers

In English, presuppositions are usually triggered by lexical items

There are several tricks to find out whether a lexical item is a presupposition trigger or not

These tests are:

- The negation test
- The conditional test
- The question test

Presupposition trigger test

Consider the sentence:

Alex is a bachelor.

This sentence implies that Alex is male.
But are we dealing with a presupposition or entailment?

14

16

Presupposition test

13

15

17

Alex is a bachelor. Does this presuppose: Alex is male?

Presupposition test

- Alex is a bachelor. Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES

Presupposition test

- Alex is a bachelor. Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES
- □ Conditional: If Alex is a bachelor, then ... *Implies*: Alex is male? YES

Presupposition test

- Alex is a bachelor. Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES
- Conditional: If Alex is a bachelor, then ... *Implies*: Alex is male? YES
- Question: Is Alex is a bachelor? Implies: Alex is male? YES

Presupposition test

- Alex is a bachelor. Does this presuppose: Alex is male?
- Negation: Alex is not a bachelor. Implies: Alex is male? YES
- Conditional: If Alex is a bachelor, then ... *Implies*: Alex is male? YES
- Question: Is Alex is a bachelor? Implies: Alex is male? YES
- Conclusion: being a bachelor presupposes being male.

Presupposition trigger test

Consider the sentence:

Alex is a man.

This sentence implies that Alex is male.
But are we dealing with a presupposition or entailment?

Presupposition test

Alex is a man. Does this presuppose: Alex is male?

Presupposition test

- Alex is a man. Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO

Presupposition test

21

23

- Alex is a man. Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- Conditional: If Alex is a man, then ... *Implies*: Alex is male? NO

Presupposition test

- Alex is a man. Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- Conditional: If Alex is a man, then ... *Implies*: Alex is male? NO
- Question: Is Alex is a man? Implies: Alex is male? NO

Presupposition test

- Alex is a man. Does this presuppose: Alex is male?
- Negation: Alex is not a man. Implies: Alex is male? NO
- Conditional: If Alex is a man, then ... Implies: Alex is male? NO
- Question: Is Alex is a man? Implies: Alex is male? NO
- □ Conclusion: being a man does not presuppose being male. 25

Presupposition trigger test

Consider the sentence:

Butch knows that Zed is dead.

This sentence implies Zed is dead.
But are we dealing with a presupposition or entailment?

Presupposition test

Butch knows that Zed is dead. Does this presuppose: Zed is dead?

Presupposition test

- Butch knows that Zed is dead. Does this presuppose: Zed is dead?
- □ Negation: Butch does not know that Zed is dead. *Implies*: Zed is dead? YES

Presupposition test

- Butch knows that Zed is dead. Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- Conditional: If Butch knows that Zed is dead, then ... Implies: Zed is dead? YES

Presupposition test

- Butch knows that Zed is dead. Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- Conditional: If Butch knows that Zed is dead, then ... *Implies*: Zed is dead? YES
- Question: Does Butch know that Zed is dead? Implies: Zed is dead? YES

27

Presupposition test

- Butch knows that Zed is dead. Does this presuppose: Zed is dead?
- Negation: Butch does not know that Zed is dead. Implies: Zed is dead? YES
- Conditional: If Butch knows that Zed is dead, then ... Implies: Zed is dead? YES

31

33

- Question: Does Butch know that Zed is dead? Implies: Zed is dead? YES
- Conclusion: knowing P presupposes P.

Presupposition triggers

Presupposition triggers are not rare
 English comes with a large variety of presupposition triggers

Possessives

Example:

Mia likes <u>her</u> husband. Mia does not like <u>her</u> husband.

□Presupposition:

Mia has a husband.

To regret

32

34

Example:

Vincent <u>regrets</u> that he left Mia alone. Vincent does not <u>regret</u> that he left Mia alone.

Presupposition:

Vincent left Mia alone.

Only

Example:

<u>Only</u> Jules likes big kahuna burgers. Not <u>only</u> Jules likes big kahuna burgers.

Presupposition:

Jules likes big kahuna burgers.

37

41

To manage

Example:

Butch <u>manage</u> to start the chopper. Butch did not <u>manage</u> to start the chopper.

Presupposition:

Butch had difficulties starting the chopper.

Third

Example:

Butch lost for the <u>third</u> time. Butch did not loose for the <u>third</u> time.

Presupposition:

Butch lost twice before.

Continue

Butch <u>continued</u> his race. Butch did not <u>continue</u> his race.

Presupposition:

Butch interrupted his race.

Another

Example:

Peter wants another beer. Peter does not want another beer.

Presupposition:

Peter had at least one beer.

Cleft construction

Example:

It was Butch who killed Vincent. It was not Butch who killed Vincent.

□Presupposition:

Someone killed Vincent.

Proper names

Example:

Butch talked to Marsellus. Butch did not talk to Marsellus.

Presupposition:

There is someone named Marsellus.

Dealing with Presupposition

The Binding Problem

Example:

Butch nearly escaped from <u>his</u> <u>apartment</u>.

Trigger "his apartment" presupposes that Butch has an apartment.

The Binding Problem

Example:

A boxer nearly escaped from <u>his</u> <u>apartment</u>.

- Trigger "his apartment" presupposes that a boxer has an apartment.
- But which boxer? A boxer? Any boxer?

50

52

The Denial Problem

□Vincent does not like his wife.

The Denial Problem

- □Vincent does not like his wife.
- □Vincent does not like his wife, because Vincent does not have a wife!

The Denial Problem

51

53

□Vincent does not regret killing Zed, because he did not kill Zed!

The Denial Problem

- ■Vincent does not regret killing Zed, because he did not kill Zed!
- Alex is not a bachelor, because she is a woman!

The Denial Problem

- Vincent does not regret killing Zed, because he did not kill Zed!
- Alex is not a bachelor, because she is a woman!
- Butch did not lie to Marsellus, because he did not tell him anything!

The Projection Problem

Consider:

Mia's husband is out of town.

Presupposes that Mia is married.

The Projection Problem

Consider:

If Mia has a husband, then Mia's husband is out of town.

Does NOT presuppose that Mia is married.

The Projection Problem

Consider:

If Mia is married, then Mia's husband is out of town.

Does NOT presuppose that Mia is married.

The Projection Problem

Consider:

If Mia dates Vincent, then Mia's husband is out of town.

Does presuppose that Mia is married.

The Projection Problem_{MR}

Consider:

John's donkey is eating quietly in the stable.

Presupposes that John has a donkey.

52

The Projection Problem_{MR}

Consider:

Either John has no donkey or John's donkey is eating quietly in the stable.

Does NOT presuppose that John has a donkey.

The Projection Problem_{MR}

Consider:

Either John is not a donkey-owner or John's donkey is eating quietly in the stable

Does NOT presuppose that John has a donkey.

The Projection Problem_{MR}

Consider:

Either John is out of hay or John's donkey is eating quietly in the stable.

Does presuppose that John has a donkey.

The Projection Problem

- Complex sentences sometimes neutralise presuppositions
- Complex' meaning here sentences with conditionals, negation, or disjunction, modals
- These sentences make it difficult to predict whether a presupposition projects or not

Accommodation

Example:

Vincent informed his boss.

Presupposition: Vincent has a boss.
What if we don't have a clue whether Vincent has a boss or not?

Accommodation: incorporating missed information as long as this is not conflicting with other information

Solutions

- There is a rich literature on presupposition
- There are many different attempts to solve the problems related to presupposition
 - Many-valued logics
 - Default logics
 - Pragmatic theories
 - Non-monotonic reasoning

Van der Sandt's Theory

- Presuppositions are essentially extremely rich anaphoric pronouns
- Presuppositions introduce new DRSs that need to be incorporated in the discourse context
- It is a good way of dealing with the binding, projection, and denial problems

Van der Sandt's Theory

- Presuppositions introduce new DRSs that need to be incorporated in the discourse context
- There are two ways to resolve presuppositional DRSs:
 - By binding
 - By accommodation

Two birds with one stone

The presupposition as anaphora theory handles anaphoric pronouns and presuppositions in essentially the same way

Presupposition = Anaphora

Anaphora = Presupposition

Two birds with one stone_{MR}

- Idea: In the same way that we find antecedents to bind pronouns and anaphora (1), we find antecedents to "bind" presuppositions (2):
- (1) If a farmer owns a donkey, he beats it.
- (2) If Mia has a husband, then Mia's husband is out of town.
- Note that the antecedents of anaphora and presupposition need not be individuals, but can be VP-properties, propositions, etc.
- (3) Sue likes movies, and so does Joan.
- (4) Ana stopped smoking.

One mechanism

- Essentially one mechanism to deal with pronouns, proper names, definite descriptions, etc.
- The differences are accounted for in the way they can accommodate and bind
 - Pronouns do not accommodate
 - Proper names always accommodate globally
 - Definite descriptions can accommodate anywhere

Presuppositions in DRT

UWe need to carry out two tasks:

- Select presupposition triggers in the lexicon
- Indicate what they presuppose
- We will use a new operator,
- the alpha-operator, α

If B1 and B2 are DRSs, the so is B1αB2
 B1 is the presupposition of B2

Presupposition in the lexicon

Indefinite vs. Definite NP

The algorithm

- After constructing a preliminary DRS for an input sentences, we still have to resolve the presuppositions
- After resolution we will have an ordinary DRS that we can use for our inference tasks
- Resulting DRS needs to be consistent and informative

Example:

Vincent danced with a woman. The woman collapsed.

Global Accommodation

If Mia dates Vincent, then her husband is out of town

x y z		
mia(x)		
vincent(y)		
husband(z)		
of(z,x)		
	date(x,y)	\Rightarrow out(z)

Non-global accommodation

- Performing global accommodation is saying that something is presupposed.
- But recall the projection problem.
- Presuppositions can be neutralised by binding and non-global accommodation.

Non-global Accommodation

Non-global Accommodation

Van der Sandt's Algorithm

- 1. Generate a DRS for the input sentence, with all elementary presuppositions marked by α
- 2. Merge this DRS with the DRS of the discourse so far processed
- 3. Traverse the DRS, and on encountering an $\alpha\text{-DRS}$ try to:
 - 1. Link (MR) or bind the presupposed information to an accessible antecedent, or
 - 2. Accommodate the information to a superordinated level of DRS
- 4. Remove those DRSs from the set of potential readings that violate the acceptability constraints

91

Accessibility and Subordination_{MR}

- A DRS B_1 is accessible from DRS B_2 when B_1 equals B_2 , or
 - when B_1 subordinates B_2
- A DRS B₁ subordinates B₂ iff:
 - B₁ immediately subordinates B₂
 - There is a DRS B such that ${\rm B_1}$ subordinates B and B subordinates ${\rm B_2}$
- B₁ immediately subordinates B₂ iff:
 - B_1 contains a condition $\neg B_2$
 - B₁ contains a condition B₂vB or BvB₂
 - B_1 contains a condition $B_2 \Rightarrow B$
 - $B_1 \Rightarrow B_2$ is a condition in some DRS B

The acceptability constraints

DRSs should obey the binding rules

DRSs should not contain free variables

- DRSs should be consistent and informative
- DRSs should also be *locally* consistent and *locally* informative

That is: the resolved DRS should not contain a subordinate DRS K whose falsity or truth is entailed by a DRS superordinate to it. (MR, from v.d.Sandt p. 367)

Free Variable Check

Consider the example: Every man likes his car

DRS obtained with global accommodation:

у				
car(y)				
of(y,x)				
	x]		
	man(x)	∣⇒	like(x,y)	
		1		-

Free Variable Check

Consider the example: Every man likes his car

DRS obtained with local accommodation:

The projection problem solved

Recall our example:

If Mia is married, then her husband is out of town

Local constraints play a crucial role here!

x z		
mia(x)		
husband(z) of(z,x)		
marriad(x)	\Rightarrow	out-of-town(z)
I III AIII EOIXI		

The projection problem solved

Recall our example:

If Mia is married, then her husband is out of town

Local constraints play a crucial role here!

The projection problem solved

Recall our example: If Mia is married, then her husband is out of town

□Local constraints play a crucial role here!

The projection problem solved_{MR}

 Question: Recall our previous examples:
 Either John is not a donkey-owner or his donkey is eating quietly in stable.
(2) If Mia has a husband, then her husband is out of town.
(3) Either John does not have a donkey or his donkey is eating quietly in the stable.
(4) If Mia dates Vincent, then her husband is out of town.(5) Either John has run out of hay or his donkey is eating quietly in the stable.
For each example, show how the acceptability constraints plus

For each example, show how the acceptability constraints plus the preference binding > global accomm. > local accomm. determine the projection possibilities of the presuppositions at issue.

The binding problem solved

Example:

A boxer nearly escaped from his apartment. Preliminary DRS:

103

105

107

The binding problem solved

Proper Names

- Proper Names can be treated as presupposition triggers
- Only global accommodation is permitted for proper names
- This assures they will always end up in the global (outermost) DRS, accessible for subsequent pronouns

Proper Names

Example: Every man knows Mia. She is Marsellus' wife.

Proper Names Example: Every man knows Mia. She is Marsellus' wife.

Does all inference tasks