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Outline 

n  What is a deep grammar and why would you want one? 
n  XLE and ParGram 
n  Robustness techniques 
n  Generation and Disambiguation 
n  Some Applications: 

–  Question-Answering System  
–  Murrinh-Patha Translation System 
–  Computer Assisted Language Learning (CALL) 
–  [Text Summarization] 



Deep grammars 

n  Provide detailed syntactic/semantic analyses 
–  HPSG (LinGO, Matrix), LFG (ParGram) 
–  Grammatical functions, tense, number, etc. 

Mary wants to leave. 
   subj(want~1,Mary~3) 
   comp(want~1,leave~2) 
   subj(leave~2,Mary~3) 
   tense(leave~2,present) 

n  Usually manually constructed 



Why don't people use them? 
n  Time consuming and expensive to write 

–  shallow parsers can be induced automatically from 
a training set 

n  Brittle 
–  shallow parsers produce something for everything 

n  Ambiguous 
–  shallow parsers rank the outputs 

n  Slow 
–  shallow parsers are very fast (real time) 

n  Other gating items for applications that need 
deep grammars 



Why should one pay attention now? 

n  Robustness:  
–  Integrated Chunk Parsers/Fragment Grammars 
–  Bad input always results in some (possibly good) output 

n  Ambiguity:   
–  Integration of stochastic methods 
–  Optimality Theory used to rank/pick alternatives  

n  Speed: comparable to shallow parsers 

n  Accuracy and information content:   
–  far beyond the capabilities of shallow parsers.   

New Generation of Large-Scale Grammars: 



XLE at PARC 

n  Platform for Developing Large-Scale LFG 
Grammars  

n  LFG (Lexical-Functional Grammar) 
–  Invented in the 1980s 

 (Joan Bresnan and Ronald Kaplan) 
–  Theoretically stable ⇔ Solid Implementation  

n  XLE is implemented in C, used with emacs, tcl/tk 
n  XLE includes a parser, generator and transfer (XFR) 

component.  



ICON 2007: XLE tutorial 

Demos:  
 1) IBM Watson 
 2) Q&A System 



Project Structure 
n  Languages: Arabic, Chinese, Danish, English, 

French, Georgian, German, Hungarian, Irish Gaelic, 
Indonesian, Japanese, Malagasy, Murrihn-Patha, 
Norwegian, Polish, Tigrinya, Turkish, Urdu, Welsh, 
Wolof…	


n  Theory: Lexical-Functional Grammar	

n  Platform: XLE	


–  parser	

–  generator	

–  machine translation 	


n  Loose organization:  no common deliverables, but 
common interests.  	




Grammar Components 

Each Grammar contains: 
•  Annotated Phrase Structure Rules (S --> NP VP) 

•  Lexicon (verb stems and functional elements) 

•  Finite-State Morphological Analyzer 

•  A version of Optimality Theory (OT): 

 used as a filter to restrict ambiguities 
  and/or parametrize the grammar.  



The Parallel in ParGram 
n  Analyze languages to a degree of abstraction that 

reflects the common underlying structure (i.e., identiy 
the subject, the object, the tense, mood, etc.) 

n  Even at this level, there is usually more than one way 
to analyze a construction 

n  The same theoretical analysis may have different 
possible implementations 

n  The ParGram Project decides on common analyses 
and implementations (via meetings and the feature 
committee) 



The Parallel in ParGram 

n  Analyses at the level of c-structure are allowed to differ 
(variance across languages) 

n  Analyses at f-structure are held as parallel as possible 
across languages (crosslinguistic invariance). 

n  Theoretical Advantage: This models the idea of UG.  

n  Applicational Advantage: machine translation is made 
easier; applications are more easily adapted to new 
languages (e.g., Kim et al. 2003).  



Basic LFG 
n  Constituent-Structure: tree  
n  Functional-Structure: Attribute Value Matrix 
                                      universal 

NP 

PRON 
 they 

S 

VP 

    V 
appear 

PRED 'pro' 

PERS 3 

NUM pl 

SUBJ 

TENSE pres 

PRED 'appear<SUBJ>' 



The Parallel in ParGram 

n  Sample Structures from the last ParGram Meeting at 
Bali, Indonesia 

n  ParGram Structure Comparison, Summer 2012 

n  Next Meeting will be in Debrecen, Hungary just after 
the LFG13 conference 



Syntactic rules 

n  Annotated phrase structure rules 
 Category --> Cat1: Schemata1; 
                      Cat2: Schemata2; 
                      Cat3: Schemata3. 
 
  S --> NP: (^ SUBJ)=! 
                  (! CASE)=NOM; 
           VP: ^=!. 



Another sample rule 

                                                  "indicate comments" 
VP --> V: ^=!;                             "head" 
           (NP: (^ OBJ)=!                "() = optionality" 
                   (! CASE)=ACC)  

           PP*: ! $ (^ ADJUNCT).    "$ = set" 
 
VP consists of: 
      a head verb 
      an optional object 
      zero or more PP adjuncts 



Lexicon 

n  Basic form for lexical entries: 
word Category1 Morphcode1 Schemata1;           
         Category2 Morphcode2 Schemata2. 
 
walk V * (^ PRED)='WALK<(^ SUBJ)>';  
        N * (^ PRED) = 'WALK' .  
  
girl   N * (^ PRED) = 'GIRL'.  
 
kick  V * { (^ PRED)='KICK<(^ SUBJ)(^ OBJ)>'  
               |(^ PRED)='KICK<(^ SUBJ)>'}.  
 
the   D * (^ DEF)=+.  



Templates 
n  Express generalizations 

–  in the lexicon 
–  in the grammar 
–  within the template space 
 

No Template 
 
girl N * (^ PRED)='GIRL'  
            { (^ NUM)=SG  
              (^ DEF)  
             |(^ NUM)=PL}. 

With Template 
 
TEMPLATE: CN = { (^ NUM)=SG  

    (^ DEF) 
     |(^ NUM)=PL}.  
girl N * (^ PRED)='GIRL' @CN.  
boy N * (^ PRED)='BOY' @CN. 



Template example cont. 
n  Parameterize template to pass in values 

CN(P) = (^ PRED)='P'  
              { (^ NUM)=SG  
              (^ DEF) 
    |(^ NUM)=PL}. 
 

n  Template can call other templates 

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.  
TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'. 
OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.  

girl N * @(CN GIRL).  
boy N * @(CN BOY).  



Parsing a string 

n  create-parser grammar1.lfg 
n  parse ”Hans sleeps” 
n  Ungrammatical via Unification, etc.  

Simple Demo 



Outline: Robustness 

n  Missing vocabulary 
–  you can't list all the proper names in the world 

n  Missing constructions 
–  there are many constructions theoretical linguistics 

rarely considers (e.g. dates, company names) 
n  Ungrammatical input 

–  real world text is not always perfect 
–  sometimes it is really horrendous 

Dealing with brittleness 



Dealing with Missing Vocabulary 
n  Build vocabulary based on the input of 

shallow methods 
–  fast 
–  extensive 
–  accurate 

n  Finite-state morphologies 
   falls -> fall +Noun +Pl 
               fall +Verb +Pres +3sg 

n  Build lexical entry on-the-fly from the 
morphological information 



Guessing words 

n  Use FST guesser if the morphology doesn't 
know the word 

–  Capitalized words can be proper nouns 
Saakashvili -> Saakashvili +Noun +Proper +Guessed 
 

–  ed words can be past tense verbs or adjectives 
fumped -> fump +Verb +Past +Guessed 
                  fumped +Adj +Deverbal +Guessed 
 

 



Ungrammatical input 

n  Real world text contains ungrammatical input 
–  typos 
–  run ons 
–  cut and paste errors 

n  Deep grammars tend to only cover 
grammatical input 

n  Two strategies 
–  robustness techniques: guesser/fragments 
–  disprefered rules for ungrammatical structures 

(useful for CALL applications) 



Harnessing Optimality Theory 

n  Optimality Theory (OT) allows the statement 
of preferences and dispreferences. 

n  In XLE, OT-Marks (annotations) can be 
added to rules or lexical entries to either 
prefer or disprefer a certain structure/item. 
  +Mark  =  preference 
    Mark  =  dispreference 

n  The strength of (dis)preference can be set 
variably.  



OT Ranking 
n  Order of Marks:  Mark3 is preferred to Mark4 

 OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1. 
 
n  NOGOOD Mark:  Marks to the left are always bad.  

Useful for parametrizing grammar with respect to certain 
domains  

OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2 
+Mark1. 

n  STOPPOINT Mark: slowly increases the search space of 
the grammar if no good solution can be found (multipass 
grammar) 
OPTIMALITYORDER Mark4 NOGOOD Mark3 
STOPPOINT Mark2 STOPPOINT Mark1. 



Rule Annotation (O-Projection) 

n  Common errors can be coded in the rules 
mismatched subject-verb agreement 
      Verb3Sg = { (^ SUBJ PERS) = 3 
                          (^ SUBJ  NUM) = sg 
                         | @(OTMARK BadVAgr) } 

n  Disprefer parses of ungrammatical structure 
–  tools for grammar writer to rank rules 
–  two+ pass system 



Demo 
Robustness 

english.lfg (FST Morphology, Fragments) 

grammar2.lfg (OT Marks) 



Generation Outline 

n  Why generate? 
n  Generation as the reverse of parsing 
n  Constraining generation (OT) 
n  The generator as a debugging tool 
n  Generation from underspecified structures 



Why generate? 
n  Machine translation 

Lang1 string -> Lang1 fstr -> Lang2 fstr -> Lang2 string 

n  Sentence condensation 
Long string -> fstr -> smaller fstr -> new string 

n  Question answering 
n  Grammar debugging 



Generation: just reverse the parser 
n  XLE uses the same basic grammar to parse 

and generate 
–  Parsing: string to analysis 
–  Generation: analysis to string 

n  Input to Generator is the f-structure analysis 

n  Formal Properties of LFG Generation:  
–  Generation produces Context Free Languages 
–  LFG generation is a well-understood formal system 

(decidability, closure).   



Generation: just reverse the parser 

n  Advantages 
–  maintainability 
–  write rules and lexicons once 

n  But 
–  special generation tokenizer 
–  different OT ranking 



Restricting Generation 
n  Do not always want to generate all the possibilities that 

can be parsed 

n  Put in special OT marks for generation to block or 
prefer certain strings 
–  fix up bad subject-verb agreement 
–  only allow certain adverb placements 
–  control punctuation options 

n  GENOPTIMALITYORDER 
–  special ordering for OT generation marks that is kept separate 

from the parsing marks 
–  serves to parametrize the grammar (parsing vs. generation)  



Generation tokenizer 

n  White space 
–  Parsing: multiple white space becomes a single 

TB        
John      appears.  -> John TB appears TB . TB 
 

–  Generation: single TB becomes a single space  
                      (or nothing)   

John TB appears TB . TB -> John appears. 
                                              *John      appears   . 



Generation morphology 

n  Suppress variant forms 
–  Parse both favor and favour 
–  Generate only one 



Ungrammatical input 

n  Linguistically ungrammatical 
–  They walks. 
–  They ate banana. 

n  Stylistically ungrammatical 
–  No ending punctuation: They appear 
–  Superfluous commas: John, and Mary appear. 
–  Shallow markup:  [NP John and Mary] appear. 



Too many options 

n  All the generated options can be linguistically 
valid, but too many for applications 

n  Occurs when more than one string has the 
same, legitimate f-structure 

n  PP placement:  
–  In the morning I left.     I left in the morning. 



Example: Prefer initial PP 
S --> (PP: @ADJUNCT) 

  NP: @SUBJ; 
         VP. 
VP --> V 
           (NP: @OBJ) 
           (PP: @ADJUNCT @(OT-MARK GenGood)).  
GENOPTIMALITYORDER NOGOOD +GenGood. 

with OT: They appear in the morning. 

parse: In the morning they appear. 

generate: without OT: In the morning they appear. 
                                    They appear in the morning. 



Generation commands 

n  XLE command line: 
–  regenerate "They appear." 
–  generate-from-file my-file.pl 
–  (regenerate-from-directory, regenerate-testfile) 

n  F-structure window: 
–  commands: generate from this fs 

n  Debugging commands 
–  regenerate-morphemes 

 



Underspecified Input 

n  F-structures provided by applications are not 
perfect 
–  may be missing features 
–  may have extra features 
–  may simply not match the grammar coverage 

n  Missing and extra features are often 
systematic 
–  specify in XLE which features can be added and 

deleted 
n  Not matching the grammar is a more serious 

problem 



Creating Paradigms 

n  Deleting and adding features within one 
grammar can produce paradigms 

n  Specifiers: 
–  set-gen-adds remove "SPEC" 
   set-gen-adds add "SPEC DET DEMON" 
–  regenerate "NP: boys" 

    { the | those | these |   } boys 

etc. 



Summary:  
Generation and Reversibility 

n  XLE parses and generates on the same 
grammar 
–  faster development time 
–  easier maintenance 

n  Minor differences controlled by: 
–  OT marks 
–  FST tokenizers 

Demo 
Generator 



Applications ⎯ Beyond Parsing 

n  Machine translation 

n  Sentence condensation 

n  Computer Assisted Language Learning 

n  Knowledge representation 



Machine Translation 

n  The Transfer Component 

n  Transferring features/F-structures 
–  adding information 
–  deleting information 

n  Examples 



Basic Idea 

n  Parse a string in the source language 
n  Rewrite/transfer the f-structure to that of the 

target language 
n  Generate the target string from the 

transferred f-structure 



Urdu to English MT 

Urdu: nadya ne bola	


f-structure Representation	

Transfer	


English f-structure	


English: Nadya spoke.	


Parser	
 Generator	




from Urdu structure … 
parse: nadya ne bola	


Urdu f-structure 



… to English structure 
Transfer	
Urdu f-structure	


English:                             
Nadya spoke.	


Generator	


English f-structure 



The Transfer Component 

n  Prolog based 
n  Small hand-written set of transfer rules 

–  Obligatory and optional rules (possibly multiple output for 
single input) 

–  Rules may add, delete, or change parts of f-structures 
n  Transfer operates on packed input and output 
n  Developer interface: Component adds new menu 

features to the output windows: 
–  transfer this f-structure 
–  translate this f-structure 
–  reload rules 



Sample Transfer Rules 

verb_verb(%Urdu, %English) :: 
   PRED(%X, %Urdu), +VTYPE(%X,%main) ==>   

  PRED(%X,% English).  
 
verb_verb(pI,drink).  
verb_verb(dEkH,see).  
verb_verb(A,come). 

Template 

Rules 

%perf plus past, get perfect past
   ASPECT(%X,perf), + TENSE(%X,past) ==>   

 PERF(%X,+), PROG(%X,-).  
%only perf, get past
   ASPECT(%X,perf) ==> TENSE(%X,past), PERF(%X,-),  

  PROG(%X,-).  



Generation 

n  Use of generator as filter since transfer rules 
are independent of grammar 
–  not constrained to preserve grammaticality 

n  Robustness techniques in generation: 
–  Insertion/deletion of features to match lexicon 
–  For fragmentary input from robust parser 

grammatical output guaranteed for separate 
fragments 



Adding features 
n  English to French translation: 

–  English nouns have no gender 
–  French nouns need gender 
–  Solution: have XLE add gender 
             the French morphology will control the value 

n  Specify additions in configuration file (xlerc): 
–  set-gen-adds add "GEND" 
–  can add multiple features: 
        set-gen-adds add "GEND CASE PCASE" 
–  XLE will optionally insert the feature 

Note:  Unconstrained additions make  generation undecidable 



Example 

[ PRED 'dormir<SUBJ>' 
  SUBJ  [ PRED 'chat' 
               NUM   sg 
               SPEC  def ]  
   TENSE present ] 

[ PRED 'dormir<SUBJ>' 
  SUBJ  [ PRED 'chat' 
               NUM   sg 
               GEND masc 
               SPEC  def ]  
   TENSE present ] 

The cat sleeps. -> Le chat dort. 



Deleting features 

n  French to English translation 
–  delete the GEND feature 

n  Specify deletions in xlerc 
–  set-gen-adds remove "GEND" 
–  can remove multiple features 
         set-gen-adds remove "GEND CASE PCASE" 
–  XLE obligatorily removes the features 
   no GEND feature will remain in the f-structure 
–  if a feature takes an f-structure value, that f-

structure is also removed 



Changing values 

n  If values of a feature do not match between 
the input f-structure and the grammar: 
–  delete the feature and then add it 

n  Example: case assignment in translation 
–  set-gen-adds remove "CASE" 
   set-gen-adds add "CASE" 
–  allows dative case in input to become accusative 
    e.g., exceptional case marking verb in input 

language but regular case in output language 



Machine Translation  

MT Demo – Murrinh Patha 



Computer Assisted Language 
Learning (CALL) Outline 

n  Goals 
n  Method 
n  Augmenting the English ParGram Grammar 

via OT Marks 
n  Generating Correct Output 
 



XLE and CALL  

n  Goal: Use large-scale intelligent grammars to 
assist in grammar checking  
–  identify errors in text by language learners 
–  provide feedback as to location and type of error 
–  generate back correct example 

n  Method: Adapt English ParGram grammar to 
deal with errors in the learner corpus 



XLE CALL system method 

n  Grammar: Introduce special UNGRAMMATICAL 
feature at f-structure for feedback as to the type of 
error 

n  Parse CALL sentence 
n  Generate back possible corrections 
n  Evaluated on developed and unseen corpus 

i.  accuracy of error detection 
ii. value of suggestions or possible feedback 
iii. range of language problems/errors covered 
iv. speed of operation 



Adapting the English Grammar 

n  The standard ParGram English grammar was 
augmented with: 
–  OT marks for ungrammatical constructions 
–  Information for feedback: Example: Mary happy. 

UNGRAMMATICAL {missing-be} 
top level f-structure 

n  Parametrization of the generator to allow for 
corrections based on ungrammatical input.  



F-structure: Mary happy. 

☞	




Example modifications 

n  Missing copula (Mary happy.) 

n  No subj-verb agreement (The boys leaves.) 

n  Missing specifier on count noun (Boy leaves.) 

n  Missing punctuation (Mary is happy) 

n  Bad adverb placement (Mary quickly leaves.) 

n  Non-fronted wh-words (You saw who?) 

n  Missing to infinitive (I want disappear.) 



Using OT Marks 

n  OT marks allow one analysis to be prefered 
over another 

n  The marks are introduced in rules and lexical 
entries  
         @(OT-MARK ungrammatical) 

n  The parser is given a ranking of the marks 
n  Only the top ranked analyses appear 



OT Marks in the CALL grammar 

n  A correct sentence triggers no marks 
n  A sentence with a known error triggers a 

mark ungrammatical 
n  A sentence with an unknown error triggers a 

mark fragment 
n  no mark < ungrammatical < fragment 

–  the grammar first tries for no mark 
–  then for a known error 
–  then a fragment if all else fails 



F-structure: Boy happy. 

☞	


☞	




Generation of corrections 

n  Remember that XLE allows the generation of 
correct sentences from ungrammtical input.  

 
n  Method:  

–  Parse ungrammatical sentence 
–  Remove UNGRAMMATICAL feature for generation  
–  Generate from stripped down ungrammatical  

 f-structure  



Underspecified Generation 

n  XLE generation from an underspecified f-structure 
(information has been removed).  

n  Example: generation from an f-structure without  
tense/aspect information. 

 John sleeps (w/o TNS-ASP)	


→	
 All tense/aspect  
variations 

John 
  {   { will be 
       |was 
       |is 
       |{has|had} been}  
    sleeping 
   |{{will have|has|had}|} slept 
   |sleeps 
   |will sleep}	




CALL Generation example 

n  parse "Mary happy." 
   generate back: 
         Mary is happy. 
 
n  parse "boy arrives." 
    generate back: 

    { This | That | The | A } boy arrives. 



CALL evaluation and conclusions 

n  Preliminary Evaluation promising:   
–   Word 10 out of 50=20% (bad user feedback) 
–   XLE 29 out of 50=58% (better user feedback) 

n  Unseen real life student production   
–   Word 5 out of 11 (bad user feedback) 
–   XLE 6 out 11 (better user feedback) 



Knowledge Representation 

n  From Syntax to Semantics 
n  From Semantics to Knowledge 

Representation 
n  Text Analysis 
n  Question/Answering 



ICON 2007: XLE tutorial 

Text – KR – Text  

F-structure 
Abstract KR 

LFG Parsing AKR Mapping Text 

Sources 

Question 

ECD 

Target KRR 

Text  
to user 

F-Structure 
Composition 

XLE/LFG 
Generation 

Logic Mapping 

Cyc 



ICON 2007: XLE tutorial 

Rewrite Rules for KR mapping 
All operate on packed representations: 
 
n  F-structure to semantics  

–  Semantic normalization,   verbnet roles,   wordnet senses,   
lexical class information 

n  Semantics to Abstract Knowledge Representation (AKR) 
–  Separating conceptual, contextual & temporal structure 

n  AKR to F-structure 
–  For generation from KR 

n  Entailment & contradiction detection rules 
–  Applied to AKR 



ICON 2007: XLE tutorial 

Semantic Representation 
Someone failed to pay 

in_context(t,  past(fail22)) 
in_context(t,  role(Agent,  fail22,  person1)) 
in_context(t,  role(Predicate,  fail22,  ctx(pay19))) 
in_context(ctx(pay19),  cardinality(person1,  some)) 
in_context(ctx(pay19),  role(Agent,  pay19,  person1)) 
in_context(ctx(pay19),  role(Recipient,  pay19,  implicit_arg94)) 
in_context(ctx(pay19),  role(Theme,  pay19,  implicit_arg95)) 
 
lex_class(fail22,  [vnclass(unknown),  wnclass(change),   
                            temp-rel,  temp_simul,  impl_pn_np,  prop-attitude])  
lex_class(pay19,  [vnclass(unknown),  wnclass(possession)])),   
word(fail22,  fail,  verb,  0,  22,  t,  [[2505082],  [2504178],  …,  [2498138]])   
word(implicit_arg:94,  implicit,  implicit,  0,  0,  ctx(pay19),  [[1740]])   
word(implicit_arg:95,  implicit,  implicit,  0,  0,  ctx(pay19),  [[1740]]) 
word(pay19,  pay,  verb,  0,  19,  ctx(pay19),   
                     [[2230669],  [1049936],  …,  [2707966]])   
word(person1,  person,  quantpro,  0,  1,  ctx(pay19),   
                     [[7626,  4576,  …,  1740]]) 



ICON 2007: XLE tutorial 

AKR 
Someone failed to pay 

Conceptual Structure: 
      subconcept(fail22, [[2:2505082], [2:2504178], …, [2:2498138]]) 
      role(Agent, fail22, person1)  
      subconcept(person1,  [[1:7626,  1:4576,  …,  1:1740]]) 
      role(cardinality_restriction, person1, some) 
      role(Predicate, fail22, ctx(pay19)) 
      subconcept(pay19, [[2:2230669], [2:1049936], …, [2:2707966]]) 
      role(Agent, pay19, person1) 
 
Contextual Structure: 
      context(t)       context(ctx(pay19)) 
      context_lifting_relation(antiveridical, t, ctx(pay19)) 
      context_relation(t, ctx(pay19), Predicate(fail22)) 
      instantiable(fail22, t) 
      uninstantiable(pay19, t) 
      instantiable(pay19, ctx(pay19)) 
 
Temporal Structure: 
      temporalRel(startsAfterEndingOf, Now, fail22) 
      temporalRel(startsAfterEndingOf, Now, pay19) 
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Entailment & Contradiction Detection 
1.  Map texts to packed AKR 
2.  Align concept & context terms between AKRs 
3.  Apply entailment & contradiction rules to aligned AKRs 

1.  eliminate entailed facts  
2.  flag contradictory facts 

4.  Inspect results 
1.  Entailment = all query facts eliminated 
2.  Contradiction = any contradiction flagged 
3.  Unknown = otherwise 

n  Properties 
–  Combination of positive aspects of graph matching 

(alignment) and theorem proving (rewriting) 
–  Ambiguity tolerant 



ICON 2007: XLE tutorial 

ECD: Illustrative Example 

n  “A little girl disappeared” entails 
“A child vanished” 

n  A trivial example  
–  Could be handled by a simpler approach  

(e.g. graph matching) 
–  Used to explain basics of ECD approach 
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Representations 
AKR: A little girl disappeared. 
 
context(t),   
instantiable(disappear4,   t) 
instantiable(girl3,   t) 
temporalRel(startsAfter,  Now, disappear4)  
role(Theme,   disappear4,   girl3) 
role(cardinality_restriction,  girl3,  sg) 
role(subsective,  girl3,  little1) 
subconcept(little1,  [[1443454…],  …])  
subconcept(disappear4,    
                   [[422658],  …,  [220927]]) 
subconcept(girl3,    
                   [[9979060…1740],   
                    [9934281…9771976…1740],   
                    …,   [9979646…1740]]) 

AKR: A child vanished 
 
context(t),   
instantiable(vanish2,   t) 
instantiable(child1,   t) 
temporalRel(startsAfter,  Now, vanish2) 
role(Theme,  vanish2,  child1) 
role(cardinality_restriction,  child1,  sg)  
 
 
subconcept(vanish2,   
                   [[422658],  …,  [2136731]]) 
subconcept(child1,   
                   [[9771320,  …1740],   
                    [9771976,  …1740],   
                    …,  [9772490,  …,  1740]]) 

è 

Contextual,   temporal and conceptual subsumption indicates entailment 



ICON 2007: XLE tutorial 

Alignment 
n  Align terms based on conceptual overlap 

***TABLE of possible Query-Passage alignments *** 
 
vanish2     [1.0–disappear4,     0.0–little1,     0.0–girl3] 
child1        [0.78–girl3,    0.0–little1,    0.0–disappear4] 
t                [1.0–t] 

n  Determined by subconcepts 
–  Degree of hypernym overlap  
 
vanish:2 = disappear:4 on sense 1 
child:1 ⊂ girl:3 on sense 2 

subconcept(vanish2,   
                   [[422658],  …,  [2136731]]) 
subconcept(disappear4,    
                   [[422658],  …,  [220927]]) 

subconcept(child1,   
                   [[9771320,  …1740],   
                    [9771976,  …1740],   
                    …,  [9772490,  …,  1740]]) 
subconcept(girl3,    
                   [[9979060…1740],   
                    [9934281…9771976…1740],   
                    …,   [9979646…1740]]) 
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Impose Alignment & Label 
Facts 

P-AKR: A little girl disappeared. 
 
P:context(t) 
P:instantiable(vanish2,   t) 
P:instantiable(child1,   t) 
P:temporalRel(startsAfter, Now, vanish2)  
P:role(Theme,   vanish2,   child1) 
P:role(cardinality_restriction,  child1,  sg) 
P:role(subsective,  child1,  little1) 
P:subconcept(little1,  [[1443454…],  …]) 
P:subconcept(vanish2,    
                   [[422658],  …,  [220927]]) 
P:subconcept(child1,    
                   [[9979060…1740],   
                    [9934281…9771976…1740],   
                    …,   [9979646…1740]]) 

Q-AKR: A child vanished 
 
Q:context(t),   
Q:instantiable(vanish2,   t) 
Q:instantiable(child1,   t) 
Q:temporalRel(startsAfter, Now, vanish2) 
Q:role(Theme,  vanish2,  child1) 
Q:role(cardinality_restriction, child1, sg)  
Q:subconcept(vanish2,   
                   [[422658],  …,  [2136731]]) 
Q:subconcept(child1,   
                   [[9771320,  …1740],   
                    [9771976,  …1740],   
                    …,  [9772490,  …,  1740]]) 

girl3 // child1 
disappear4 // vanish2 

n  Combined P-AKR and Q-AKR used as input to 
entailment and contradiction transfer rules 
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Entailment & Contradiction 
Rules 

n  Packed rewrite rules that 
–  Eliminate Q-facts that are entailed by P-facts 
–  Flag Q-facts that are contradicted by P-facts 

n  Rule phases 
–  Preliminary concept subsumption 
–  Refine concept subsumption via role restrictions 
–  Entailments & contradictions from instantiable / 

uninstantiable facts 
–  Entailments & contradictions from other relations 
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Preliminary Subsumption Rules 

e.g. “girl” and “child” 
 
Q:subconcept(%Sk,   %QConcept) 
P:subconcept(%Sk,   %PConcept) 
{%QConcept ⊂ %PConcept} 
==> 
prelim_more_specific(%Sk,   P). 

e.g. “disappear” and “vanish” 
 
Q:subconcept(%Sk,   %QConcept) 
P:subconcept(%Sk,   %PConcept) 
{%QConcept = %PConcept} 
==> 
prelim_more_specific(%Sk,   mutual). 

prelim_more_specific(vanish2,   mutual) 
prelim_more_specific(child1,   P) 

n  Example rules: 

n  Apply to subconcept facts to give: 
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Role Restriction Rules 

“little girl” more specific than “child” 
 
prelim_more_specific(%Sk,   %PM) 
{ member(%PM,   [P,   mutual]) } 
P:role(%%,   %Sk,   %%)  
-Q:role(%%,   %Sk,   %%) 
==> 
more_specific(%Sk,   P). 

n  Example rules: 

n  Rules apply to give: 
 

more_specific(child1,   P) 
more_specific(vanish2,   P) 
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Instantiation Rules 

Q-instantiability entailed 
 
more_specific(%Sk,   P),   
P:instantiable(%Sk,  %Ctx) 
Q:instantiable(%Sk,  %Ctx) 
==> 
0. 

Q-uninstantiability contradicted 
 
more_specific(%Sk,  P),   
P:instantiable(%Sk, %Ctx) 
Q:uninstantiable(%Sk, %Ctx) 
==> 
contradiction. 

n  Remove entailed instantiabilities and  
flag contradictions: 
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ECD Summary 
n  Combination of graph matching and inference 

on deep representations 
n  Use of transfer system allows ECD on 

packed / ambiguous representations 
–  No need for early disambiguation 
–  Passage and query effectively disambiguate each 

other 
n  ECD rules currently geared toward very high 

precision detection of entailments & 
contradictions 
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Semantic/AKR Indexing 
n  ECD looks for inferential relations between a 

question and a candidate answer 
n  Semantic/AKR search retrieves candidate 

answers from a large database of representations 
n  Text representations are indexed by 

–  Concepts referred to 
–  Selected role relations 

n  Basic retrieval from index 
–  Find text terms more specific than query terms 
–  Ensure query roles are present in retrieved text 
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Semantic/AKR Indexing 
n  Semantic/AKR search retrieves candidate 

answers from a large database of representations 
–  Simple relevance retrieval (graph/concept subsumption) 

A girl paid. Did a child pay? 
»  Text term more specific than query term 

n  Inferentially enhanced retrieval 
–  Recognizing when text terms need to be less specific 

than query 
Someone forgot to pay. Did everyone pay? 

»  Text term is less specific than query term 

–  Looser matching on roles present in text 

n  Retrievals are then fed to ECD module 
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Semantic Lexical Resources 
n  Semantics/KR applications require additional 

lexical resources 
–  use existing resources when possible 
–  XLE transfer system incorporates basic database 

to handle large lexicons efficiently 
n  Unified (semantic) lexicon 

–  Ties existing resources to XLE lexicons  
(WordNet,   VerbNet,   ontologies,  …) 

–  Additional annotation of lexical classes  
(fail vs manage,   believe vs know) 

–  Used in mapping f-structures to semantics/AKR 
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n  Demo 
n  AKR and ECD 



Advancing Open Text Semantic Analysis   

n  Deeper, more detailed linguistic analysis 
–  Roles, concepts, normalization of f-structures 

n  Canonicalization into tractable KR 
–  (un)instantiability 
–  temporal relations 

n  Ambiguity enabled semantics and KR   
–  Common packing mechanisms at all levels of 

representation 
–  Avoid errors from premature disambiguation 

Driving force: Entailment & Contradiction Detection (ECD) 



ECD and Maintaining Text Databases 

Tip 27057 
Problem: Left cover damage 

Cause: The left cover safety cable is 
breaking, allowing the left cover to 
pivot too far, breaking the cover. 

Solution: Remove the plastic sleeve 
from around the cable.  Cutting the 
plastic off of the cable makes the cable 
more flexible, which prevents cable 
breakage.  Cable breakage is a major 
source of damage to the left cover. 

Tip 27118 
Problem: The current safety cable 
used in the 5100 Document Handler 
fails prematurely causing the Left 
Document Handler Cover to break. 

Cause: The plastic jacket made the 
cable too stiff.  This causes stress to be 
concentrated on the cable ends, where 
it eventually fails. 

Solution: When the old safety cable 
fails, replace it with the new one 
[12K1981], which has the plastic 
jacket shortened. 

Maintain quality of text database by identifying areas 
of redundancy and conflict between documents 
Deep, canonical, ambiguity-enabled semantic processing  
is needed to detect entailments & contradictions like these. 
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XLE: Summary 

n  XLE 
–  parser (tree and dependency output) 
–  generator (reversible parsing grammar) 
–  powerful, efficient and flexible rewrite system 

n  Grammar engineering makes deep grammars 
feasible 
–  robustness techniques 
–  integration of shallow methods 

n  Ordered rewrite system to manipulate grammar 
output 



XLE: Applications 

n  Many current applications can use shallow 
grammars 

n  Fast, accurate, broad-coverage deep 
grammars enable extensions to existing 
applications and new applications 
–  semantic search 
–  summarization/condensation 
–  CALL and grammar checking 
–  entity and entity relation detection 
–  machine translation 



XLE: Applications 

n  Powerful methods that allow innovative 
solutions: 
–  Integration of shallow methods (chunking, 

statistical information) 
–  Integration of optimality marks 
–  rewrite system 
–  innovative semantic representation 



Contact information 
n  Miriam Butt 

miriam.butt@uni-konstanz.de 
http://ling.uni-konstanz.de/pages/home/butt 
 

n  Tracy Holloway King 
thking@microsoft.com 
http://www.parc.com/thking 

n  Many of the publications in the bibliography are available 
from our websites. 

n  Information about XLE (including link to documentation): 
 http://www.parc.com/istl/groups/nltt/xle/default.html 
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