
Computational Grammar
Development: What is it good for?

Miriam Butt
(University of Konstanz)
and
Tracy Holloway King (eBay Inc.)

Kathmandu 2012

Outline

n  What is a deep grammar and why would you want one?
n  XLE and ParGram
n  Robustness techniques
n  Generation and Disambiguation
n  Some Applications:

–  Question-Answering System
–  Murrinh-Patha Translation System
–  Computer Assisted Language Learning (CALL)
–  [Text Summarization]

Deep grammars

n  Provide detailed syntactic/semantic analyses
–  HPSG (LinGO, Matrix), LFG (ParGram)
–  Grammatical functions, tense, number, etc.

Mary wants to leave.
 subj(want~1,Mary~3)
 comp(want~1,leave~2)
 subj(leave~2,Mary~3)
 tense(leave~2,present)

n  Usually manually constructed

Why don't people use them?
n  Time consuming and expensive to write

–  shallow parsers can be induced automatically from
a training set

n  Brittle
–  shallow parsers produce something for everything

n  Ambiguous
–  shallow parsers rank the outputs

n  Slow
–  shallow parsers are very fast (real time)

n  Other gating items for applications that need
deep grammars

Why should one pay attention now?

n  Robustness:
–  Integrated Chunk Parsers/Fragment Grammars
–  Bad input always results in some (possibly good) output

n  Ambiguity:
–  Integration of stochastic methods
–  Optimality Theory used to rank/pick alternatives

n  Speed: comparable to shallow parsers

n  Accuracy and information content:
–  far beyond the capabilities of shallow parsers.

New Generation of Large-Scale Grammars:

XLE at PARC

n  Platform for Developing Large-Scale LFG
Grammars

n  LFG (Lexical-Functional Grammar)
–  Invented in the 1980s

 (Joan Bresnan and Ronald Kaplan)
–  Theoretically stable ⇔ Solid Implementation

n  XLE is implemented in C, used with emacs, tcl/tk
n  XLE includes a parser, generator and transfer (XFR)

component.

ICON 2007: XLE tutorial

Demos:
 1) IBM Watson
 2) Q&A System

Project Structure
n  Languages: Arabic, Chinese, Danish, English,

French, Georgian, German, Hungarian, Irish Gaelic,
Indonesian, Japanese, Malagasy, Murrihn-Patha,
Norwegian, Polish, Tigrinya, Turkish, Urdu, Welsh,
Wolof…	

n  Theory: Lexical-Functional Grammar	

n  Platform: XLE	

–  parser	

–  generator	

–  machine translation 	

n  Loose organization: no common deliverables, but
common interests. 	

Grammar Components

Each Grammar contains:
•  Annotated Phrase Structure Rules (S --> NP VP)

•  Lexicon (verb stems and functional elements)

•  Finite-State Morphological Analyzer

•  A version of Optimality Theory (OT):

 used as a filter to restrict ambiguities
 and/or parametrize the grammar.

The Parallel in ParGram
n  Analyze languages to a degree of abstraction that

reflects the common underlying structure (i.e., identiy
the subject, the object, the tense, mood, etc.)

n  Even at this level, there is usually more than one way
to analyze a construction

n  The same theoretical analysis may have different
possible implementations

n  The ParGram Project decides on common analyses
and implementations (via meetings and the feature
committee)

The Parallel in ParGram

n  Analyses at the level of c-structure are allowed to differ
(variance across languages)

n  Analyses at f-structure are held as parallel as possible
across languages (crosslinguistic invariance).

n  Theoretical Advantage: This models the idea of UG.

n  Applicational Advantage: machine translation is made
easier; applications are more easily adapted to new
languages (e.g., Kim et al. 2003).

Basic LFG
n  Constituent-Structure: tree
n  Functional-Structure: Attribute Value Matrix
 universal

NP

PRON
 they

S

VP

 V
appear

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'

The Parallel in ParGram

n  Sample Structures from the last ParGram Meeting at
Bali, Indonesia

n  ParGram Structure Comparison, Summer 2012

n  Next Meeting will be in Debrecen, Hungary just after
the LFG13 conference

Syntactic rules

n  Annotated phrase structure rules
 Category --> Cat1: Schemata1;
 Cat2: Schemata2;
 Cat3: Schemata3.

 S --> NP: (^ SUBJ)=!
 (! CASE)=NOM;
 VP: ^=!.

Another sample rule

 "indicate comments"
VP --> V: ^=!; "head"
 (NP: (^ OBJ)=! "() = optionality"
 (! CASE)=ACC)

 PP*: ! $ (^ ADJUNCT). "$ = set"

VP consists of:
 a head verb
 an optional object
 zero or more PP adjuncts

Lexicon

n  Basic form for lexical entries:
word Category1 Morphcode1 Schemata1;
 Category2 Morphcode2 Schemata2.

walk V * (^ PRED)='WALK<(^ SUBJ)>';
 N * (^ PRED) = 'WALK' .

girl N * (^ PRED) = 'GIRL'.

kick V * { (^ PRED)='KICK<(^ SUBJ)(^ OBJ)>'
 |(^ PRED)='KICK<(^ SUBJ)>'}.

the D * (^ DEF)=+.

Templates
n  Express generalizations

–  in the lexicon
–  in the grammar
–  within the template space

No Template

girl N * (^ PRED)='GIRL'
 { (^ NUM)=SG
 (^ DEF)
 |(^ NUM)=PL}.

With Template

TEMPLATE: CN = { (^ NUM)=SG

 (^ DEF)
 |(^ NUM)=PL}.
girl N * (^ PRED)='GIRL' @CN.
boy N * (^ PRED)='BOY' @CN.

Template example cont.
n  Parameterize template to pass in values

CN(P) = (^ PRED)='P'
 { (^ NUM)=SG
 (^ DEF)
 |(^ NUM)=PL}.

n  Template can call other templates

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.
TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'.
OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.

girl N * @(CN GIRL).
boy N * @(CN BOY).

Parsing a string

n  create-parser grammar1.lfg
n  parse ”Hans sleeps”
n  Ungrammatical via Unification, etc.

Simple Demo

Outline: Robustness

n  Missing vocabulary
–  you can't list all the proper names in the world

n  Missing constructions
–  there are many constructions theoretical linguistics

rarely considers (e.g. dates, company names)
n  Ungrammatical input

–  real world text is not always perfect
–  sometimes it is really horrendous

Dealing with brittleness

Dealing with Missing Vocabulary
n  Build vocabulary based on the input of

shallow methods
–  fast
–  extensive
–  accurate

n  Finite-state morphologies
 falls -> fall +Noun +Pl
 fall +Verb +Pres +3sg

n  Build lexical entry on-the-fly from the
morphological information

Guessing words

n  Use FST guesser if the morphology doesn't
know the word

–  Capitalized words can be proper nouns
Saakashvili -> Saakashvili +Noun +Proper +Guessed

–  ed words can be past tense verbs or adjectives
fumped -> fump +Verb +Past +Guessed
 fumped +Adj +Deverbal +Guessed

Ungrammatical input

n  Real world text contains ungrammatical input
–  typos
–  run ons
–  cut and paste errors

n  Deep grammars tend to only cover
grammatical input

n  Two strategies
–  robustness techniques: guesser/fragments
–  disprefered rules for ungrammatical structures

(useful for CALL applications)

Harnessing Optimality Theory

n  Optimality Theory (OT) allows the statement
of preferences and dispreferences.

n  In XLE, OT-Marks (annotations) can be
added to rules or lexical entries to either
prefer or disprefer a certain structure/item.
 +Mark = preference
 Mark = dispreference

n  The strength of (dis)preference can be set
variably.

OT Ranking
n  Order of Marks: Mark3 is preferred to Mark4

 OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1.

n  NOGOOD Mark: Marks to the left are always bad.

Useful for parametrizing grammar with respect to certain
domains

OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2
+Mark1.

n  STOPPOINT Mark: slowly increases the search space of
the grammar if no good solution can be found (multipass
grammar)
OPTIMALITYORDER Mark4 NOGOOD Mark3
STOPPOINT Mark2 STOPPOINT Mark1.

Rule Annotation (O-Projection)

n  Common errors can be coded in the rules
mismatched subject-verb agreement
 Verb3Sg = { (^ SUBJ PERS) = 3
 (^ SUBJ NUM) = sg
 | @(OTMARK BadVAgr) }

n  Disprefer parses of ungrammatical structure
–  tools for grammar writer to rank rules
–  two+ pass system

Demo
Robustness

english.lfg (FST Morphology, Fragments)

grammar2.lfg (OT Marks)

Generation Outline

n  Why generate?
n  Generation as the reverse of parsing
n  Constraining generation (OT)
n  The generator as a debugging tool
n  Generation from underspecified structures

Why generate?
n  Machine translation

Lang1 string -> Lang1 fstr -> Lang2 fstr -> Lang2 string

n  Sentence condensation
Long string -> fstr -> smaller fstr -> new string

n  Question answering
n  Grammar debugging

Generation: just reverse the parser
n  XLE uses the same basic grammar to parse

and generate
–  Parsing: string to analysis
–  Generation: analysis to string

n  Input to Generator is the f-structure analysis

n  Formal Properties of LFG Generation:
–  Generation produces Context Free Languages
–  LFG generation is a well-understood formal system

(decidability, closure).

Generation: just reverse the parser

n  Advantages
–  maintainability
–  write rules and lexicons once

n  But
–  special generation tokenizer
–  different OT ranking

Restricting Generation
n  Do not always want to generate all the possibilities that

can be parsed

n  Put in special OT marks for generation to block or
prefer certain strings
–  fix up bad subject-verb agreement
–  only allow certain adverb placements
–  control punctuation options

n  GENOPTIMALITYORDER
–  special ordering for OT generation marks that is kept separate

from the parsing marks
–  serves to parametrize the grammar (parsing vs. generation)

Generation tokenizer

n  White space
–  Parsing: multiple white space becomes a single

TB
John appears. -> John TB appears TB . TB

–  Generation: single TB becomes a single space
 (or nothing)

John TB appears TB . TB -> John appears.
 *John appears .

Generation morphology

n  Suppress variant forms
–  Parse both favor and favour
–  Generate only one

Ungrammatical input

n  Linguistically ungrammatical
–  They walks.
–  They ate banana.

n  Stylistically ungrammatical
–  No ending punctuation: They appear
–  Superfluous commas: John, and Mary appear.
–  Shallow markup: [NP John and Mary] appear.

Too many options

n  All the generated options can be linguistically
valid, but too many for applications

n  Occurs when more than one string has the
same, legitimate f-structure

n  PP placement:
–  In the morning I left. I left in the morning.

Example: Prefer initial PP
S --> (PP: @ADJUNCT)

 NP: @SUBJ;
 VP.
VP --> V
 (NP: @OBJ)
 (PP: @ADJUNCT @(OT-MARK GenGood)).
GENOPTIMALITYORDER NOGOOD +GenGood.

with OT: They appear in the morning.

parse: In the morning they appear.

generate: without OT: In the morning they appear.
 They appear in the morning.

Generation commands

n  XLE command line:
–  regenerate "They appear."
–  generate-from-file my-file.pl
–  (regenerate-from-directory, regenerate-testfile)

n  F-structure window:
–  commands: generate from this fs

n  Debugging commands
–  regenerate-morphemes

Underspecified Input

n  F-structures provided by applications are not
perfect
–  may be missing features
–  may have extra features
–  may simply not match the grammar coverage

n  Missing and extra features are often
systematic
–  specify in XLE which features can be added and

deleted
n  Not matching the grammar is a more serious

problem

Creating Paradigms

n  Deleting and adding features within one
grammar can produce paradigms

n  Specifiers:
–  set-gen-adds remove "SPEC"
 set-gen-adds add "SPEC DET DEMON"
–  regenerate "NP: boys"

 { the | those | these | } boys

etc.

Summary:
Generation and Reversibility

n  XLE parses and generates on the same
grammar
–  faster development time
–  easier maintenance

n  Minor differences controlled by:
–  OT marks
–  FST tokenizers

Demo
Generator

Applications ⎯ Beyond Parsing

n  Machine translation

n  Sentence condensation

n  Computer Assisted Language Learning

n  Knowledge representation

Machine Translation

n  The Transfer Component

n  Transferring features/F-structures
–  adding information
–  deleting information

n  Examples

Basic Idea

n  Parse a string in the source language
n  Rewrite/transfer the f-structure to that of the

target language
n  Generate the target string from the

transferred f-structure

Urdu to English MT

Urdu: nadya ne bola	

f-structure Representation	

Transfer	

English f-structure	

English: Nadya spoke.	

Parser	
 Generator	

from Urdu structure …
parse: nadya ne bola	

Urdu f-structure

… to English structure
Transfer	
Urdu f-structure	

English:
Nadya spoke.	

Generator	

English f-structure

The Transfer Component

n  Prolog based
n  Small hand-written set of transfer rules

–  Obligatory and optional rules (possibly multiple output for
single input)

–  Rules may add, delete, or change parts of f-structures
n  Transfer operates on packed input and output
n  Developer interface: Component adds new menu

features to the output windows:
–  transfer this f-structure
–  translate this f-structure
–  reload rules

Sample Transfer Rules

verb_verb(%Urdu, %English) ::
 PRED(%X, %Urdu), +VTYPE(%X,%main) ==>

 PRED(%X,% English).

verb_verb(pI,drink).
verb_verb(dEkH,see).
verb_verb(A,come).

Template

Rules

%perf plus past, get perfect past
 ASPECT(%X,perf), + TENSE(%X,past) ==>

 PERF(%X,+), PROG(%X,-).
%only perf, get past
 ASPECT(%X,perf) ==> TENSE(%X,past), PERF(%X,-),

 PROG(%X,-).

Generation

n  Use of generator as filter since transfer rules
are independent of grammar
–  not constrained to preserve grammaticality

n  Robustness techniques in generation:
–  Insertion/deletion of features to match lexicon
–  For fragmentary input from robust parser

grammatical output guaranteed for separate
fragments

Adding features
n  English to French translation:

–  English nouns have no gender
–  French nouns need gender
–  Solution: have XLE add gender
 the French morphology will control the value

n  Specify additions in configuration file (xlerc):
–  set-gen-adds add "GEND"
–  can add multiple features:
 set-gen-adds add "GEND CASE PCASE"
–  XLE will optionally insert the feature

Note: Unconstrained additions make generation undecidable

Example

[PRED 'dormir<SUBJ>'
 SUBJ [PRED 'chat'
 NUM sg
 SPEC def]
 TENSE present]

[PRED 'dormir<SUBJ>'
 SUBJ [PRED 'chat'
 NUM sg
 GEND masc
 SPEC def]
 TENSE present]

The cat sleeps. -> Le chat dort.

Deleting features

n  French to English translation
–  delete the GEND feature

n  Specify deletions in xlerc
–  set-gen-adds remove "GEND"
–  can remove multiple features
 set-gen-adds remove "GEND CASE PCASE"
–  XLE obligatorily removes the features
 no GEND feature will remain in the f-structure
–  if a feature takes an f-structure value, that f-

structure is also removed

Changing values

n  If values of a feature do not match between
the input f-structure and the grammar:
–  delete the feature and then add it

n  Example: case assignment in translation
–  set-gen-adds remove "CASE"
 set-gen-adds add "CASE"
–  allows dative case in input to become accusative
 e.g., exceptional case marking verb in input

language but regular case in output language

Machine Translation

MT Demo – Murrinh Patha

Computer Assisted Language
Learning (CALL) Outline

n  Goals
n  Method
n  Augmenting the English ParGram Grammar

via OT Marks
n  Generating Correct Output

XLE and CALL

n  Goal: Use large-scale intelligent grammars to
assist in grammar checking
–  identify errors in text by language learners
–  provide feedback as to location and type of error
–  generate back correct example

n  Method: Adapt English ParGram grammar to
deal with errors in the learner corpus

XLE CALL system method

n  Grammar: Introduce special UNGRAMMATICAL
feature at f-structure for feedback as to the type of
error

n  Parse CALL sentence
n  Generate back possible corrections
n  Evaluated on developed and unseen corpus

i. accuracy of error detection
ii. value of suggestions or possible feedback
iii. range of language problems/errors covered
iv. speed of operation

Adapting the English Grammar

n  The standard ParGram English grammar was
augmented with:
–  OT marks for ungrammatical constructions
–  Information for feedback: Example: Mary happy.

UNGRAMMATICAL {missing-be}
top level f-structure

n  Parametrization of the generator to allow for
corrections based on ungrammatical input.

F-structure: Mary happy.

☞	

Example modifications

n  Missing copula (Mary happy.)

n  No subj-verb agreement (The boys leaves.)

n  Missing specifier on count noun (Boy leaves.)

n  Missing punctuation (Mary is happy)

n  Bad adverb placement (Mary quickly leaves.)

n  Non-fronted wh-words (You saw who?)

n  Missing to infinitive (I want disappear.)

Using OT Marks

n  OT marks allow one analysis to be prefered
over another

n  The marks are introduced in rules and lexical
entries
 @(OT-MARK ungrammatical)

n  The parser is given a ranking of the marks
n  Only the top ranked analyses appear

OT Marks in the CALL grammar

n  A correct sentence triggers no marks
n  A sentence with a known error triggers a

mark ungrammatical
n  A sentence with an unknown error triggers a

mark fragment
n  no mark < ungrammatical < fragment

–  the grammar first tries for no mark
–  then for a known error
–  then a fragment if all else fails

F-structure: Boy happy.

☞	

☞	

Generation of corrections

n  Remember that XLE allows the generation of
correct sentences from ungrammtical input.

n  Method:

–  Parse ungrammatical sentence
–  Remove UNGRAMMATICAL feature for generation
–  Generate from stripped down ungrammatical

 f-structure

Underspecified Generation

n  XLE generation from an underspecified f-structure
(information has been removed).

n  Example: generation from an f-structure without
tense/aspect information.

 John sleeps (w/o TNS-ASP)	

→	
 All tense/aspect
variations

John
 { { will be
 |was
 |is
 |{has|had} been}
 sleeping
 |{{will have|has|had}|} slept
 |sleeps
 |will sleep}	

CALL Generation example

n  parse "Mary happy."
 generate back:
 Mary is happy.

n  parse "boy arrives."
 generate back:

 { This | That | The | A } boy arrives.

CALL evaluation and conclusions

n  Preliminary Evaluation promising:
–  Word 10 out of 50=20% (bad user feedback)
–  XLE 29 out of 50=58% (better user feedback)

n  Unseen real life student production
–  Word 5 out of 11 (bad user feedback)
–  XLE 6 out 11 (better user feedback)

Knowledge Representation

n  From Syntax to Semantics
n  From Semantics to Knowledge

Representation
n  Text Analysis
n  Question/Answering

ICON 2007: XLE tutorial

Text – KR – Text

F-structure
Abstract KR

LFG Parsing AKR Mapping Text

Sources

Question

ECD

Target KRR

Text
to user

F-Structure
Composition

XLE/LFG
Generation

Logic Mapping

Cyc

ICON 2007: XLE tutorial

Rewrite Rules for KR mapping
All operate on packed representations:

n  F-structure to semantics

–  Semantic normalization, verbnet roles, wordnet senses,
lexical class information

n  Semantics to Abstract Knowledge Representation (AKR)
–  Separating conceptual, contextual & temporal structure

n  AKR to F-structure
–  For generation from KR

n  Entailment & contradiction detection rules
–  Applied to AKR

ICON 2007: XLE tutorial

Semantic Representation
Someone failed to pay

in_context(t, past(fail22))
in_context(t, role(Agent, fail22, person1))
in_context(t, role(Predicate, fail22, ctx(pay19)))
in_context(ctx(pay19), cardinality(person1, some))
in_context(ctx(pay19), role(Agent, pay19, person1))
in_context(ctx(pay19), role(Recipient, pay19, implicit_arg94))
in_context(ctx(pay19), role(Theme, pay19, implicit_arg95))

lex_class(fail22, [vnclass(unknown), wnclass(change),
 temp-rel, temp_simul, impl_pn_np, prop-attitude])
lex_class(pay19, [vnclass(unknown), wnclass(possession)])),
word(fail22, fail, verb, 0, 22, t, [[2505082], [2504178], …, [2498138]])
word(implicit_arg:94, implicit, implicit, 0, 0, ctx(pay19), [[1740]])
word(implicit_arg:95, implicit, implicit, 0, 0, ctx(pay19), [[1740]])
word(pay19, pay, verb, 0, 19, ctx(pay19),
 [[2230669], [1049936], …, [2707966]])
word(person1, person, quantpro, 0, 1, ctx(pay19),
 [[7626, 4576, …, 1740]])

ICON 2007: XLE tutorial

AKR
Someone failed to pay

Conceptual Structure:
 subconcept(fail22, [[2:2505082], [2:2504178], …, [2:2498138]])
 role(Agent, fail22, person1)
 subconcept(person1, [[1:7626, 1:4576, …, 1:1740]])
 role(cardinality_restriction, person1, some)
 role(Predicate, fail22, ctx(pay19))
 subconcept(pay19, [[2:2230669], [2:1049936], …, [2:2707966]])
 role(Agent, pay19, person1)

Contextual Structure:
 context(t) context(ctx(pay19))
 context_lifting_relation(antiveridical, t, ctx(pay19))
 context_relation(t, ctx(pay19), Predicate(fail22))
 instantiable(fail22, t)
 uninstantiable(pay19, t)
 instantiable(pay19, ctx(pay19))

Temporal Structure:
 temporalRel(startsAfterEndingOf, Now, fail22)
 temporalRel(startsAfterEndingOf, Now, pay19)

ICON 2007: XLE tutorial

Semantic Search Architecture

Inference -
sensitive

lexical
resources

Source
Documents

Text
Passages

Queries

Query
AKR

Query
index
terms

Passage, AKR
+ index terms

Ranked,
highlighted

answers

ASKER
Knowledge repository

Passages + AKR
with semantic index

Normalize to AKR
(Abstract Knowledge Representation)
Extract semantic index terms

Entailment &
Contradiction

Detection

Retrieved
passages

+ AKR

Inference -
sensitive

lexical
resources

Inference -
sensitive

lexical
resources

Source
Documents

Text
Passages

Queries

Query
AKR

Query
index
terms

Passage, AKR
+ index terms

Ranked,
highlighted

answers

ASKER
Knowledge repository

Passages + AKR
with semantic index

ASKER
Knowledge repository

Passages + AKR
with semantic index

Normalize to AKR
(Abstract Knowledge Representation)
Extract semantic index terms

Normalize to AKR
(Abstract Knowledge Representation)
Extract semantic index terms

Entailment &
Contradiction

Detection

Entailment &
Contradiction

Detection

Retrieved
passages

+ AKR

ICON 2007: XLE tutorial

Entailment & Contradiction Detection
1.  Map texts to packed AKR
2.  Align concept & context terms between AKRs
3.  Apply entailment & contradiction rules to aligned AKRs

1.  eliminate entailed facts
2.  flag contradictory facts

4.  Inspect results
1.  Entailment = all query facts eliminated
2.  Contradiction = any contradiction flagged
3.  Unknown = otherwise

n  Properties
–  Combination of positive aspects of graph matching

(alignment) and theorem proving (rewriting)
–  Ambiguity tolerant

ICON 2007: XLE tutorial

ECD: Illustrative Example

n  “A little girl disappeared” entails
“A child vanished”

n  A trivial example
–  Could be handled by a simpler approach

(e.g. graph matching)
–  Used to explain basics of ECD approach

ICON 2007: XLE tutorial

Representations
AKR: A little girl disappeared.

context(t),
instantiable(disappear4, t)
instantiable(girl3, t)
temporalRel(startsAfter, Now, disappear4)
role(Theme, disappear4, girl3)
role(cardinality_restriction, girl3, sg)
role(subsective, girl3, little1)
subconcept(little1, [[1443454…], …])
subconcept(disappear4,
 [[422658], …, [220927]])
subconcept(girl3,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

AKR: A child vanished

context(t),
instantiable(vanish2, t)
instantiable(child1, t)
temporalRel(startsAfter, Now, vanish2)
role(Theme, vanish2, child1)
role(cardinality_restriction, child1, sg)

subconcept(vanish2,
 [[422658], …, [2136731]])
subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])

è

Contextual, temporal and conceptual subsumption indicates entailment

ICON 2007: XLE tutorial

Alignment
n  Align terms based on conceptual overlap

***TABLE of possible Query-Passage alignments ***

vanish2 [1.0–disappear4, 0.0–little1, 0.0–girl3]
child1 [0.78–girl3, 0.0–little1, 0.0–disappear4]
t [1.0–t]

n  Determined by subconcepts
–  Degree of hypernym overlap

vanish:2 = disappear:4 on sense 1
child:1 ⊂ girl:3 on sense 2

subconcept(vanish2,
 [[422658], …, [2136731]])
subconcept(disappear4,
 [[422658], …, [220927]])

subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])
subconcept(girl3,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

ICON 2007: XLE tutorial

Impose Alignment & Label
Facts

P-AKR: A little girl disappeared.

P:context(t)
P:instantiable(vanish2, t)
P:instantiable(child1, t)
P:temporalRel(startsAfter, Now, vanish2)
P:role(Theme, vanish2, child1)
P:role(cardinality_restriction, child1, sg)
P:role(subsective, child1, little1)
P:subconcept(little1, [[1443454…], …])
P:subconcept(vanish2,
 [[422658], …, [220927]])
P:subconcept(child1,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

Q-AKR: A child vanished

Q:context(t),
Q:instantiable(vanish2, t)
Q:instantiable(child1, t)
Q:temporalRel(startsAfter, Now, vanish2)
Q:role(Theme, vanish2, child1)
Q:role(cardinality_restriction, child1, sg)
Q:subconcept(vanish2,
 [[422658], …, [2136731]])
Q:subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])

girl3 // child1
disappear4 // vanish2

n  Combined P-AKR and Q-AKR used as input to
entailment and contradiction transfer rules

ICON 2007: XLE tutorial

Entailment & Contradiction
Rules

n  Packed rewrite rules that
–  Eliminate Q-facts that are entailed by P-facts
–  Flag Q-facts that are contradicted by P-facts

n  Rule phases
–  Preliminary concept subsumption
–  Refine concept subsumption via role restrictions
–  Entailments & contradictions from instantiable /

uninstantiable facts
–  Entailments & contradictions from other relations

ICON 2007: XLE tutorial

Preliminary Subsumption Rules

e.g. “girl” and “child”

Q:subconcept(%Sk, %QConcept)
P:subconcept(%Sk, %PConcept)
{%QConcept ⊂ %PConcept}
==>
prelim_more_specific(%Sk, P).

e.g. “disappear” and “vanish”

Q:subconcept(%Sk, %QConcept)
P:subconcept(%Sk, %PConcept)
{%QConcept = %PConcept}
==>
prelim_more_specific(%Sk, mutual).

prelim_more_specific(vanish2, mutual)
prelim_more_specific(child1, P)

n  Example rules:

n  Apply to subconcept facts to give:

ICON 2007: XLE tutorial

Role Restriction Rules

“little girl” more specific than “child”

prelim_more_specific(%Sk, %PM)
{ member(%PM, [P, mutual]) }
P:role(%%, %Sk, %%)
-Q:role(%%, %Sk, %%)
==>
more_specific(%Sk, P).

n  Example rules:

n  Rules apply to give:

more_specific(child1, P)
more_specific(vanish2, P)

ICON 2007: XLE tutorial

Instantiation Rules

Q-instantiability entailed

more_specific(%Sk, P),
P:instantiable(%Sk, %Ctx)
Q:instantiable(%Sk, %Ctx)
==>
0.

Q-uninstantiability contradicted

more_specific(%Sk, P),
P:instantiable(%Sk, %Ctx)
Q:uninstantiable(%Sk, %Ctx)
==>
contradiction.

n  Remove entailed instantiabilities and
flag contradictions:

ICON 2007: XLE tutorial

ECD Summary
n  Combination of graph matching and inference

on deep representations
n  Use of transfer system allows ECD on

packed / ambiguous representations
–  No need for early disambiguation
–  Passage and query effectively disambiguate each

other
n  ECD rules currently geared toward very high

precision detection of entailments &
contradictions

ICON 2007: XLE tutorial

Semantic/AKR Indexing
n  ECD looks for inferential relations between a

question and a candidate answer
n  Semantic/AKR search retrieves candidate

answers from a large database of representations
n  Text representations are indexed by

–  Concepts referred to
–  Selected role relations

n  Basic retrieval from index
–  Find text terms more specific than query terms
–  Ensure query roles are present in retrieved text

ICON 2007: XLE tutorial

Semantic/AKR Indexing
n  Semantic/AKR search retrieves candidate

answers from a large database of representations
–  Simple relevance retrieval (graph/concept subsumption)

A girl paid. Did a child pay?
»  Text term more specific than query term

n  Inferentially enhanced retrieval
–  Recognizing when text terms need to be less specific

than query
Someone forgot to pay. Did everyone pay?

»  Text term is less specific than query term

–  Looser matching on roles present in text

n  Retrievals are then fed to ECD module

ICON 2007: XLE tutorial

Semantic Lexical Resources
n  Semantics/KR applications require additional

lexical resources
–  use existing resources when possible
–  XLE transfer system incorporates basic database

to handle large lexicons efficiently
n  Unified (semantic) lexicon

–  Ties existing resources to XLE lexicons
(WordNet, VerbNet, ontologies, …)

–  Additional annotation of lexical classes
(fail vs manage, believe vs know)

–  Used in mapping f-structures to semantics/AKR

ICON 2007: XLE tutorial

n  Demo
n  AKR and ECD

Advancing Open Text Semantic Analysis

n  Deeper, more detailed linguistic analysis
–  Roles, concepts, normalization of f-structures

n  Canonicalization into tractable KR
–  (un)instantiability
–  temporal relations

n  Ambiguity enabled semantics and KR
–  Common packing mechanisms at all levels of

representation
–  Avoid errors from premature disambiguation

Driving force: Entailment & Contradiction Detection (ECD)

ECD and Maintaining Text Databases

Tip 27057
Problem: Left cover damage

Cause: The left cover safety cable is
breaking, allowing the left cover to
pivot too far, breaking the cover.

Solution: Remove the plastic sleeve
from around the cable. Cutting the
plastic off of the cable makes the cable
more flexible, which prevents cable
breakage. Cable breakage is a major
source of damage to the left cover.

Tip 27118
Problem: The current safety cable
used in the 5100 Document Handler
fails prematurely causing the Left
Document Handler Cover to break.

Cause: The plastic jacket made the
cable too stiff. This causes stress to be
concentrated on the cable ends, where
it eventually fails.

Solution: When the old safety cable
fails, replace it with the new one
[12K1981], which has the plastic
jacket shortened.

Maintain quality of text database by identifying areas
of redundancy and conflict between documents
Deep, canonical, ambiguity-enabled semantic processing
is needed to detect entailments & contradictions like these.

common
 sense knowledge

Architecture for Document ECD

Sentential
Semantics

Discourse
Semantics

logical
representation
of sentences

macro
text

structure

LFG
Parser

grammatical
representation
of sentences

Linguistic
Knowledge

Rep’n
Builder

knowledge
representation

Domain elements
Belts, cables, ..
 Repair tasks
 Manufacturing
 defects

Semantic
Lexicon

Discourse
Grammar
and Rules

Structure
Matcher

Rep’n
Knowledge
and Rules

Higher level structures
Plans
Action Sequences
Hypotheses

NLàKR rules
Gradable
 predicate
Thematic
 roles

XLE: Summary

n  XLE
–  parser (tree and dependency output)
–  generator (reversible parsing grammar)
–  powerful, efficient and flexible rewrite system

n  Grammar engineering makes deep grammars
feasible
–  robustness techniques
–  integration of shallow methods

n  Ordered rewrite system to manipulate grammar
output

XLE: Applications

n  Many current applications can use shallow
grammars

n  Fast, accurate, broad-coverage deep
grammars enable extensions to existing
applications and new applications
–  semantic search
–  summarization/condensation
–  CALL and grammar checking
–  entity and entity relation detection
–  machine translation

XLE: Applications

n  Powerful methods that allow innovative
solutions:
–  Integration of shallow methods (chunking,

statistical information)
–  Integration of optimality marks
–  rewrite system
–  innovative semantic representation

Contact information
n  Miriam Butt

miriam.butt@uni-konstanz.de
http://ling.uni-konstanz.de/pages/home/butt

n  Tracy Holloway King
thking@microsoft.com
http://www.parc.com/thking

n  Many of the publications in the bibliography are available
from our websites.

n  Information about XLE (including link to documentation):
 http://www.parc.com/istl/groups/nltt/xle/default.html

Bibliography
XLE Documentation: http://www2.parc.com/isl/groups/nltt/xle/doc/

xle_toc.html
Butt, M., T.H. King, M.-E. Niño, and F. Segond. 1999. A Grammar Writer's

Cookbook. Stanford University: CSLI Publications.
Butt, Miriam and Tracy Holloway King. 2003. Grammar Writing, Testing, and

Evaluation. In A. Farghaly (ed.) Handbook for Language Engineers. CSLI
Publications. pp. 129-179.

Butt, M., M. Forst, T.H. King, and J. Kuhn. 2003. The Feature Space in
Parallel Grammar Writing. ESSLLI 2003 Workshop on Ideas and
Strategies for Multilingual Grammar Development.

Butt, M., H. Dyvik, T.H. King, H. Masuichi, and C. Rohrer. 2002. The Parallel
Grammar Project. Proceedings of COLING2002, Workshop on Grammar
Engineering and Evaluation pp. 1-7.

Butt, M., T.H. King, and J. Maxwell. 2003. Productive encoding of Urdu
complex predicates in the ParGram Project. In Proceedings of the
EACL03: Workshop on Computational Linguistics for South Asian
Languages: Expanding Synergies with Europe. pp. 9-13.

Butt, M. and T.H. King. 2003. Complex Predicates via Restriction. In
Proceedings of the LFG03 Conference. CSLI On-line Publications. pp.
92-104.

Cetinoglu, O. and K.Oflazer. 2006.
Morphology-Syntax Interface for Turkish LFG. Proceedings of COLING/
ACL2006.

Crouch, D. 2005. Packed rewriting for mapping semantics to KR. In
Proceedings of the International Workshop on Computational Semantics.

Crouch, D. and T.H. King. 2005. Unifying lexical resources. In Proceedings of
the Verb Workshop. Saarbruecken, Germany.

Crouch, D. and T.H. King. 2006. Semantics via F-structure rewriting. In
Proceedings of LFG06. CSLI On-line Publications.

Frank, A., T.H. King, J. Kuhn, and J. Maxwell. 1998. Optimality Theory Style
Constraint Ranking in Large-Scale LFG Grammars Proceedings of the
LFG98 Conference. CSLI On-line Publications.

Frank, A. et al. 2006. Question Answering from Structured Knowledge
Sources. Journal of Applied Logic, Special Issue on Questions and
Answers: Theoretical and Applied Perspectives.

Kaplan, R., T.H. King, and J. Maxwell. 2002. Adapting Existing Grammars:
The XLE Experience. Proceedings of COLING2002, Workshop on
Grammar Engineering and Evaluation, pp. 29-35.

Kaplan, Ronald M. and Jürgen Wedekind. 2000. LFG generation produces
context-free languages. In Proceedings of the 18th International
Conference on Computational Linguistics (COLING2000), Saarbrücken.

Kaplan, R.M., S. Riezler, T. H. King, J. T. Maxwell III, A. Vasserman, R.
Crouch. 2004. Speed and Accuracy in Shallow and Deep Stochastic
Parsing. In Proceedings of the Human Language Technology Conference
and the 4th Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL'04), Boston, MA.

Kaplan, R. M. and P. Newman. 1997. Lexical resource reconciliation in the
Xerox Linguistic Environment. In Computational environments for
grammar development and linguistic engineering, pp. 54-61. Proceedings
of a workshop sponsored by the Association for Computational
Linguistics, Madrid, Spain, July 1997.

Kaplan, R. M., K. Netter, J. Wedekind, and A. Zaenen. 1989. Translation by
structural correspondences. In Proceedings of the 4th Meeting of the
EACL, pp. 272-281. University of Manchester: European Chapter of the
Association for Computational Linguistics. Reprinted in Dalrymple et al.
(editors), Formal Issues in Lexical-Functional Grammar. CSLI, 1995.

Karttunen, L. and K. R. Beesley. 2003. Finite-State Morphology. CSLI
Publications.

Kay, M. 1996. Chart Generation. Proceedings of the ACL 1996, 200-204.
Khader, R. 2003. Evaluation of an English LFG-based Grammar as Error

Checker. UMIST MSc Thesis, Manchester.

Kim, R., M. Dalrymple, R. Kaplan, T.H. King, H. Masuichi, and T. Ohkuma.
2003. Multilingual Grammar Development via Grammar Porting. ESSLLI
2003 Workshop on Ideas and Strategies for Multilingual Grammar
Development.

King, T.H. and R. Kaplan. 2003. Low-Level Mark-Up and Large-scale LFG
Grammar Processing. On-line Proceedings of the LFG03 Conference.

King, T.H., S. Dipper, A. Frank, J. Kuhn, and J. Maxwell. 2000. Ambiguity
Management in Grammar Writing. Linguistic Theory and Grammar
ImplementationWorkshop at European Summer School in Logic, Language,
and Information (ESSLLI-2000).

Masuichi, H., T. Ohkuma, H. Yoshimura and Y. Harada. 2003. Japanese
parser on the basis of the Lexical-Functional Grammar Formalism and its
Evaluation, Proceedings of The 17th Pacific Asia Conference on Language,
Information and Computation (PACLIC17), pp. 298-309.

Maxwell, J. T., III and R. M. Kaplan. 1989. An overview of disjunctive constraint
satisfaction. In Proceedings of the International Workshop on Parsing
Technologies, pp. 18-27. Also published as `A Method for Disjunctive
Constraint Satisfaction', M. Tomita, editor, Current Issues in Parsing
Technology, Kluwer Academic Publishers, 1991.

Riezler, S., T.H. King, R. Kaplan, D. Crouch, J. Maxwell, and M. Johnson.
2002. Parsing the Wall Street Journal using a Lexical-Functional
Grammar and Discriminative Estimation Techniques. Proceedings of the
Annual Meeting of the Association for Computational Linguistics,
University of Pennsylvania.

Riezler, S., T.H. King, R. Crouch, and A. Zaenen. 2003. Statistical sentence
condensation using ambiguity packing and stochastic disambiguation
methods for Lexical-Functional Grammar. Proceedings of the Human
Language Technology Conference and the 3rd Meeting of the North A
merican Chapter of the Association for Computational Linguistics (HLT-
NAACL'03).

Seiss, Melanie. 2012. A morphological guesser for a morphologically rich
language. Poster presented at the DGfS Jahrestagung, 06.-09.03.2012,
Frankfurt. http://ling.uni-konstanz.de/pages/home/seiss/publications.html

Seiss, Melanie and Rachel Nordlinger. 2011. An Electronic Dictionary and
Translation System for Murrinh-Patha. Proceedings of the EUROCALL
2011 conference, University of Nottingham.

Shemtov, H. 1996. Generation of Paraphrases from Ambiguous Logical
Forms. Proceedings of COLING 1996, 919-924.

Shemtov, H. 1997. Ambiguity Management in Natural Language
Generation. PhD thesis, Stanford University.

Umemoto, H. 2006.
Implementing a Japanese Semantic Parser Based on Glue Approach.
Proceedings of The 20th Pacific Asia Conference on Language,
Information and Computation.

