
XLE:XLE:

 Grammar Development Platform Grammar Development Platform

 Parser/Generator/Rewrite System Parser/Generator/Rewrite System

Miriam Butt (Miriam Butt (UniversitUniversitäät t Konstanz)Konstanz)

Tracy Holloway King (PARC)Tracy Holloway King (PARC)

ICON 2007ICON 2007

OutlineOutline

! What is a deep grammar and why would you want
one?

! XLE: A First Walkthrough

! Robustness techniques

! Generation

! Disambiguation

! Applications:
– Machine Translation

– Sentence Condensation

– Computer Assisted Language Learning (CALL)

– Knowledge Representation

Applications of Language EngineeringApplications of Language Engineering

Functionality

D
o

m
a

in
 C

o
v
e

ra
g

e

Low

N
a

rr
o

w
B

ro
a
d

High

Alta
Vista

AskJeeves

Google

Post-Search
Sifting

Autonomous
Knowledge Filtering

Natural
Dialogue

Knowledge
Fusion

Microsoft
Paperclip

Manually-tagged
Keyword Search

Document Base
Management

Restricted
Dialogue

Useful
Summary

Good
Translation

Deep grammarsDeep grammars

! Provide detailed syntactic/semantic analyses

– HPSG (LinGO, Matrix), LFG (ParGram)

– Grammatical functions, tense, number, etc.
Mary wants to leave.

 subj(want~1,Mary~3)

 comp(want~1,leave~2)

 subj(leave~2,Mary~3)

 tense(leave~2,present)

! Usually manually constructed

Why would you want Why would you want one?one?

! Meaning sensitive applications

– overkill for many NLP applications

! Applications which use shallow methods for
English may not be able to for "free" word
order languages

– can read many functions off of trees in English
» subj: NP sister to VP

» obj: first NP sister to V

– need other information in German, Japanese, etc.

Deep analysis mattersDeep analysis matters……

 if you care about the answerif you care about the answer

Example:

A delegation led by Vice President Philips, head of the chemical
 division, flew to Chicago a week after the incident.

Question: Who flew to Chicago?

Candidate answers:

division closest noun

head next closest

V.P. Philips next

shallow but wrong

delegation furthest away but

Subject of flew
deep and right

Why don't people use them?Why don't people use them?

! Time consuming and expensive to write
– shallow parsers can be induced automatically from

a training set

! Brittle
– shallow parsers produce something for everything

! Ambiguous
– shallow parsers rank the outputs

! Slow
– shallow parsers are very fast (real time)

! Other gating items for applications that need
deep grammars

Why should one pay attention now?Why should one pay attention now?

! Robustness:

– Integrated Chunk Parsers

– Bad input always results in some (possibly good) output

! Ambiguity:

– Integration of stochastic methods

– Optimality Theory used to rank/pick alternatives

! Speed: comparable to shallow parsers

! Accuracy and information content:

– far beyond the capabilities of shallow parsers.

New Generation of Large-Scale Grammars:

XLE at PARCXLE at PARC

! Platform for Developing Large-Scale LFG
Grammars

! LFG (Lexical-Functional Grammar)
– Invented in the 1980s

(Joan Bresnan and Ronald Kaplan)

– Theoretically stable ! Solid Implementation

! XLE is implemented in C, used with emacs, tcl/tk

! XLE includes a parser, generator and transfer
component.

Palo Alto Research

Center (PARC),

English, French

IMS, Stuttgart

German
Fuji Xerox

Japanese Grammar

University of Bergen

Norwegian: Bokmal and Nynorsk
Konstanz

Urdu Grammar
XRCE Grenoble

French Grammar

The

ParGram

Project

Dublin City
University

English Grammar
Induction

Copenhagen Business

School, Danish

Turkish Grammar

Essex, Oxford

Welsh, Malagasy

Project StructureProject Structure

! Languages: English, Danish, French, German,
Japanese, Malagasy, Norwegian, Turkish, Urdu,
Welsh

! Theory: Lexical-Functional Grammar

! Platform: XLE

– parser

– generator

– machine translation

! Loose organization: no common deliverables, but
common interests.

Brief ProjectBrief Project History History

! 1994: English, French, German

– Solidified grammatical analyses and conventions

– Expanded, hardened XLE

! 1999: Norwegian

! 2000: Japanese, Urdu

– Optimality Theory Integrated

! 2002: Danish

– MT component (rewrite system)

! 2005: Welsh, Malagasy

! 2006: Turkish

– Work on integrating knowledge representation/ontologies

Grammar ComponentsGrammar Components

Each Grammar contains:

• Annotated Phrase Structure Rules (S --> NP VP)

• Lexicon (verb stems and functional elements)

• Finite-State Morphological Analyzer

• A version of Optimality Theory (OT):

used as a filter to restrict ambiguities
and/or parametrize the grammar.

The Parallel in ParGramThe Parallel in ParGram

! Analyze languages to a degree of abstraction that
reflects the common underlying structure (i.e., identiy
the subject, the object, the tense, mood, etc.)

! Even at this level, there is usually more than one way
to analyze a construction

! The same theoretical analysis may have different
possible implementations

! The ParGram Project decides on common analyses
and implementations (via meetings and the feature
committee)

The Parallel in ParGramThe Parallel in ParGram

! Analyses at the level of c-structure are allowed to differ
(variance across languages)

! Analyses at f-structure are held as parallel as possible
across languages (crosslinguistic invariance).

! Theoretical Advantage: This models the idea of UG.

! Applicational Advantage: machine translation is made
easier; applications are more easily adapted to new
languages (e.g., Kim et al. 2003).

Basic LFGBasic LFG

! Constituent-Structure: tree

! Functional-Structure: Attribute Value Matrix

 universal

NP

PRON

 they

S

VP

 V

appear

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'

ExamplesExamples

! Free Word Order (Warlpiri) vs. Fixed

(1) kurdu-jarra-rlu kapala maliki

child-Dual-Erg Aux.Pres dog.Abs

wajipili-nyi wita-jarra-rlu

chase-NonPast small-Dual-Erg

‘The two small children are chasing the dog.’

! Passives

! Auxiliaries

Grammar componentsGrammar components

! Configuration: links components

! Annotated phrase structure rules

! Lexicon

! Templates

! Other possible components

– Finite State (FST) morphology

– disambiguation feature file

Basic configuration fileBasic configuration file

TOY ENGLISH CONFIG (1.0)

ROOTCAT S.

FILES .

LEXENTRIES (TOY ENGLISH).

RULES (TOY ENGLISH).

TEMPLATES (TOY ENGLISH).

GOVERNABLERELATIONS SUBJ OBJ OBJ2 OBL COMP XCOMP.

SEMANTICFUNCTIONS ADJUNCT TOPIC.

NONDISTRIBUTIVES NUM PERS.

EPSILON e.

OPTIMALITYORDER

 NOGOOD.

Grammar sectionsGrammar sections

! Rules, templates, lexicons

! Each has:
– version ID

– component ID

– XLE version number (1.0)

– terminated by four dashes ----

! Example
STANDARD ENGLISH RULES (1.0)

Syntactic rulesSyntactic rules

! Annotated phrase structure rules

 Category --> Cat1: Schemata1;

 Cat2: Schemata2;

 Cat3: Schemata3.

 S --> NP: (^ SUBJ)=!

 (! CASE)=NOM;

 VP: ^=!.

Another sample ruleAnother sample rule

 "indicate comments"

VP --> V: ^=!; "head"

 (NP: (^ OBJ)=! "() = optionality"

 (! CASE)=ACC)

 PP*: ! $ (^ ADJUNCT). "$ = set"

VP consists of:

 a head verb

 an optional object

 zero or more PP adjuncts

LexiconLexicon

! Basic form for lexical entries:
word Category1 Morphcode1 Schemata1;

 Category2 Morphcode2 Schemata2.

walk V * (^ PRED)='WALK<(^ SUBJ)>';

 N * (^ PRED) = 'WALK' .

girl N * (^ PRED) = 'GIRL'.

kick V * { (^ PRED)='KICK<(^ SUBJ)(^ OBJ)>'

 |(^ PRED)='KICK<(^ SUBJ)>'}.

the D * (^ DEF)=+.

TemplatesTemplates

! Express generalizations

– in the lexicon

– in the grammar

– within the template space

No Template

girl N * (^ PRED)='GIRL'

 { (^ NUM)=SG

 (^ DEF)

 |(^ NUM)=PL}.

With Template

TEMPLATE: CN = { (^ NUM)=SG

(^ DEF)

 |(^ NUM)=PL}.

girl N * (^ PRED)='GIRL' @CN.

boy N * (^ PRED)='BOY' @CN.

Template example cont.Template example cont.

! Parameterize template to pass in values

CN(P) = (^ PRED)='P'

 { (^ NUM)=SG

 (^ DEF)

 |(^ NUM)=PL}.

! Template can call other templates

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.

TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'.

OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.

girl N * @(CN GIRL).

boy N * @(CN BOY).

Parsing a stringParsing a string

! create-parser demo-eng.lfg

! parse "the girl walks"

Walkthrough Demo

Outline: RobustnessOutline: Robustness

! Missing vocabulary

– you can't list all the proper names in the world

! Missing constructions

– there are many constructions theoretical linguistics
rarely considers (e.g. dates, company names)

! Ungrammatical input

– real world text is not always perfect

– sometimes it is really horrendous

Dealing with brittleness

Dealing with Missing VocabularyDealing with Missing Vocabulary

! Build vocabulary based on the input of
shallow methods

– fast

– extensive

– accurate

! Finite-state morphologies

 falls -> fall +Noun +Pl

 fall +Verb +Pres +3sg

! Build lexical entry on-the-fly from the
morphological information

Building lexical entriesBuilding lexical entries

! Lexical entries
-unknown N XLE @(COMMON-NOUN %stem).

+Noun N-SFX XLE @(PERS 3).

+Pl N-NUM XLE @(NUM pl).

! Rule
 Noun -> N N-SFX N-NUM.

! Structure
 [PRED 'fall'

 NTYPE common

 PERS 3

 NUM pl]

Guessing wordsGuessing words

! Use FST guesser if the morphology doesn't
know the word

– Capitalized words can be proper nouns
Saakashvili -> Saakashvili +Noun +Proper +Guessed

– ed words can be past tense verbs or adjectives
fumped -> fump +Verb +Past +Guessed

 fumped +Adj +Deverbal +Guessed

Using the lexiconsUsing the lexicons

! Rank the lexical lookup

1. overt entry in lexicon

2. entry built from information from morphology

3. entry built from information from guesser
» quality will depend on language type

! Use the most reliable information

! Fall back only as necessary

Missing constructionsMissing constructions

! Even large hand-written grammars are not
complete

– new constructions, especially with new corpora

– unusual constructions

! Generally longer sentences fail

! Build up as much as you can; stitch together
the pieces

Solution: Fragment and Chunk Parsing

Grammar engineering approachGrammar engineering approach

! First try to get a complete parse

! If fail, build up chunks that get complete
parses

! Have a fall-back for things without even
chunk parses

! Link these chunks and fall-backs together in a
single structure

Fragment Chunks: Sample outputFragment Chunks: Sample output

! the the dog appears.

! Split into:

– "token" the

– sentence "the dog appears"

– ignore the period

F-structureF-structure Ungrammatical inputUngrammatical input

! Real world text contains ungrammatical input

– typos

– run ons

– cut and paste errors

! Deep grammars tend to only cover
grammatical input

! Two strategies

– robustness techniques: guesser/fragments

– disprefered rules for ungrammatical structures

Harnessing Optimality TheoryHarnessing Optimality Theory

! Optimality Theory (OT) allows the statement
of preferences and dispreferences.

! In XLE, OT-Marks (annotations) can be
added to rules or lexical entries to either
prefer or disprefer a certain structure/item.

+Mark = preference

 Mark = dispreference

! The strength of (dis)preference can be set
variably.

OT RankingOT Ranking

! Order of Marks: Mark3 is preferred to Mark4

OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1.

! NOGOOD Mark: Marks to the left are always bad.
Useful for parametrizing grammar with respect to certain
domains

OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2

+Mark1.

! STOPPOINT Mark: slowly increases the search space of
the grammar if no good solution can be found (multipass
grammar)

OPTIMALITYORDER Mark4 NOGOOD Mark3

STOPPOINT Mark2 STOPPOINT Mark1.

Rule Annotation (O-Projection)Rule Annotation (O-Projection)

! Common errors can be coded in the rules

mismatched subject-verb agreement

 Verb3Sg = { (^ SUBJ PERS) = 3

 (^ SUBJ NUM) = sg

 | @(OTMARK BadVAgr) }

! Disprefer parses of ungrammatical structure

– tools for grammar writer to rank rules

– two+ pass system

Robustness via Optimality MarksRobustness via Optimality Marks

Demo

Ungrammatical Sentences

Girls walks.

The the dog appears.

english.lfg (Tokenizer, FST Morphology)

Robustness SummaryRobustness Summary

! Integrate shallow methods

– morphologies (finite state)

– guessers

! Fall back techniques

– fragment grammar (chunks)

– disprefered rules (OT)

Generation OutlineGeneration Outline

! Why generate?

! Generation as the reverse of parsing

! Constraining generation (OT)

! The generator as a debugging tool

! Generation from underspecified structures

Why generate?Why generate?

! Machine translation

Lang1 string -> Lang1 fstr -> Lang2 fstr -> Lang2 string

! Sentence condensation

Long string -> fstr -> smaller fstr -> new string

! Question answering

! Grammar debugging

Generation: Generation: justjust reverse the parser reverse the parser

! XLE uses the same basic grammar to parse
and generate

– Parsing: string to analysis

– Generation: analysis to string

! Input to Generator is the f-structure analysis

! Formal Properties of LFG Generation:

– Generation produces Context Free Languages

– LFG generation is a well-understood formal system
(decidability, closure).

Generation: justGeneration: just reverse the parser reverse the parser

! Advantages

– maintainability

– write rules and lexicons once

! But

– special generation tokenizer

– different OT ranking

Restricting GenerationRestricting Generation

! Do not always want to generate all the possibilities
that can be parsed

! Put in special OT marks for generation to block or
prefer certain strings
– fix up bad subject-verb agreement

– only allow certain adverb placements

– control punctuation options

! GENOPTIMALITYORDER
– special ordering for OT generation marks that is kept separate

from the parsing marks

– serves to parametrize the grammar (parsing vs. generation)

Generation Generation tokenizertokenizer

! White space

– Parsing: multiple white space becomes a single
TB

John appears. -> John TB appears TB . TB

– Generation: single TB becomes a single space

 (or nothing)
John TB appears TB . TB -> John appears.

 *John appears .

Generation Generation tokenizertokenizer

! Capitalization

– Parsing: optionally decap initially
They came -> they came

Mary came -> Mary came

– Generation: always capitalize initially
they came -> They came

 *they came

! May regularize other options

– quotes, dashes, etc.

Generation morphologyGeneration morphology

! Suppress variant forms

– Parse both favor and favour

– Generate only one

MorphconfigMorphconfig for parsing & generation for parsing & generation

STANDARD ENGLISH MOPRHOLOGY (1.0)

TOKENIZE:

P!eng.tok.parse.fst G!eng.tok.gen.fst

ANALYZE:

eng.infl-morph.fst G!amerbritfilter.fst

G!amergen.fst

Reversing the parsing grammarReversing the parsing grammar

! The parsing grammar rules can be used
directly as a generator

! Adapt the grammar rule set with a special OT
ranking GENOPTIMALITYORDER

! Why do this?

– parse ungrammatical input

– have too many options: one f-structure
corresponds to many surface strings

Ungrammatical inputUngrammatical input

! Linguistically ungrammatical

– They walks.

– They ate banana.

! Stylistically ungrammatical

– No ending punctuation: They appear

– Superfluous commas: John, and Mary appear.

– Shallow markup: [NP John and Mary] appear.

Too many optionsToo many options

! All the generated options can be linguistically
valid, but too many for applications

! Occurs when more than one string has the
same, legitimate f-structure

! PP placement:

– In the morning I left. I left in the morning.

Using the Gen OT rankingUsing the Gen OT ranking

! Generally much simpler than in the parsing
direction

– Usually only use standard marks and NOGOOD

no STOPPOINT

– Can have a few marks that are shared by several
constructions

 one or two for disprefered

 one or two for prefered

Example: Comma in Example: Comma in coordcoord

COORD(_CAT) = _CAT: @CONJUNCT;

 (COMMA: @(OTMARK GenBadPunct))

 CONJ

 _CAT: @CONJUNCT.

GENOPTIMALITYORDER GenBadPunct NOGOOD.

parse: They appear, and disappear.

generate: without OT: They appear(,) and disappear.

 with OT: They appear and disappear.

Example: Prefer initial PPExample: Prefer initial PP

S --> (PP: @ADJUNCT)

NP: @SUBJ;

 VP.

VP --> V

 (NP: @OBJ)

 (PP: @ADJUNCT @(OT-MARK GenGood)).

GENOPTIMALITYORDER NOGOOD +GenGood.

with OT: They appear in the morning.

parse: In the morning they appear.

generate: without OT: In the morning they appear.

 They appear in the morning.

Generation commandsGeneration commands

! XLE command line:
– regenerate "They appear."

– generate-from-file my-file.pl

– (regenerate-from-directory, regenerate-testfile)

! F-structure window:

– commands: generate from this fs

! Debugging commands

– regenerate-morphemes

Debugging the generatorDebugging the generator

! When generating from an f-structure produced
by the same grammar, XLE should always
generate

! Unless:

– OT marks block the only possible string

– something is wrong with the tokenizer/morphology

 regenerate-morphemes: if this gets a string

 the tokenizer/morphology is not the problem

! XLE has generation robustness features

– seeing what is added/removed helps with debugging

Underspecified InputUnderspecified Input

! F-structures provided by applications are not
perfect
– may be missing features

– may have extra features

– may simply not match the grammar coverage

! Missing and extra features are often
systematic
– specify in XLE which features can be added and

deleted

! Not matching the grammar is a more serious
problem

Creating ParadigmsCreating Paradigms

! Deleting and adding features within one
grammar can produce paradigms

! Specifiers:
– set-gen-adds remove "SPEC"

 set-gen-adds add "SPEC DET DEMON"

– regenerate "NP: boys"

{ the | those | these | } boys

etc.

Generation for DebuggingGeneration for Debugging

! Checking for grammar and lexicon errors

– create-generator english.lfg

– reports ill-formed rules, templates, feature
declarations, lexical entries

! Checking for ill-formed sentences that can be
parsed

– parse a sentence

– see if all the results are legitimate strings

– regenerate “they appear.”

Regeneration exampleRegeneration example

% regenerate "In the park they often see the boy with
the telescope."

parsing {In the park they often see the boy with the
telescope.}

4 solutions, 0.39 CPU seconds, 178 subtrees unified

{They see the boy in the park|In the park they see the
boy} often with the telescope.

regeneration took 0.87 CPU seconds.

Regenerate Regenerate testfiletestfile

! regenerate-testfile

! produces new file: testfile.regen

– sentences with parses and generated strings

– lists sentences with no strings

– if have no Gen OT marks, everything should
generate back to itself

Summary:Summary:

Generation and ReversibilityGeneration and Reversibility

! XLE parses and generates on the same
grammar

– faster development time

– easier maintenance

! Minor differences controlled by:

– OT marks

– FST tokenizers

Demo

Generator

Ambiguity OutlineAmbiguity Outline

! Sources of Ambiguity:
– Alternative c-structure rules

– Disjunctions in f-structure description

– Lexical categories

! XLE’s display/computation of ambiguity
– Packed representations

– Dependent choices

! Dealing with ambiguity
– Recognize legitimate ambiguity

– OT marks for preferences

– Shallow Markup/Tagging

– Stochastic disambiguation

AmbiguityAmbiguity

! Deep grammars are massively ambiguous

! Use packing to parse and manipulate the
ambiguities efficiently

! Trim early with shallow markup

– fewer parses to choose from

– faster parse time

! Choose most probable parse for applications
that need a single input

Syntactic AmbiguitySyntactic Ambiguity

! Lexical

– part of speech

– subcategorization frames

! Syntactic

– attachments

– coordination

! Implemented system highlights interactions

Lexical Ambiguity: POSLexical Ambiguity: POS

! verb-noun
I saw her duck.

 I saw [NP her duck].

 I saw [NP her] [VP duck].

! noun-adjective
the [N/A mean] rule

 that child is [A mean].

 he calculated the [N mean].

Morphology and POS ambiguityMorphology and POS ambiguity

! English has impoverished morphology and
hence extreme POS ambiguity

– leaves: leave +Verb +Pres +3sg

 leaf +Noun +Pl

 leave +Noun +Pl

– will: +Noun +Sg

 +Aux

 +Verb +base

! Even languages with extensive morphology
have ambiguities

Lexical ambiguity: Lexical ambiguity: SubcatSubcat frames frames

! Words often have more than one
subcategorization frame

– transitive/intransitive

 I broke it./It broke.

– intransitive/oblique

 He went./He went to London.

– transitive/transitive with infinitive

 I want it./I want it to leave.

SubcatSubcat-Rule interactions-Rule interactions

! OBL vs. ADJUNCT with intransitive/oblique

– He went to London.

 [PRED ‘go<(^ SUBJ)(^ OBL)>’

 SUBJ [PRED ‘he’]

 OBL [PRED ‘to<(^ OBJ)>’

 OBJ [PRED ‘London’]]]

 [PRED ‘go<(^ SUBJ)>’

 SUBJ [PRED ‘he’]

 ADJUNCT { [PRED ‘to<(^ OBJ)>’

 OBJ [PRED ‘London’]]}]

OBL-ADJUNCT cont.OBL-ADJUNCT cont.

! Passive by phrase
– It was eaten by the boys.

 [PRED ‘eat<(^ OBL-AG)(^ SUBJ)>’

 SUBJ [PRED ‘it’]

 OBL-AG [PRED ‘by<(^ OBJ)>’

 OBJ [PRED ‘boy’]]]

– It was eaten by the window.

 [PRED ‘eat<NULL(^ SUBJ)>’

 SUBJ [PRED ‘it’]

 ADJUNCT { [PRED ‘by<(^ OBJ)>’

 OBJ [PRED ‘boy’]]}]

OBJ-TH and Noun-Noun compoundsOBJ-TH and Noun-Noun compounds

! Many OBJ-TH verbs are also transitive

– I took the cake. I took Mary the cake.

! The grammar needs a rule for noun-noun
compounds

– the tractor trailer, a grammar rule

! These can interact

– I took the grammar rules

– I took [NP the grammar rules]

– I took [NP the grammar] [NP rules]

Syntactic AmbiguitiesSyntactic Ambiguities

! Even without lexical ambiguity, there is
legitimate syntactic ambiguity

– PP attachment

– Coordination

! Want to:

– constrain these to legitimate cases

– make sure they are processed efficiently

PP AttachmentPP Attachment

! PP adjuncts can attach to VPs and NPs

! Strings of PPs in the VP are ambiguous

– I see the girl with the telescope.

 I see [the girl with the telescope].

 I see [the girl] [with the telescope].

! This ambiguity is reflected in:

– the c-structure (constituency)

– the f-structure (ADJUNCT attachment)

PP attachment cont.PP attachment cont.

! This ambiguity multiplies with more PPs

– I saw the girl with the telescope

– I saw the girl with the telescope in the garden

– I saw the girl with the telescope in the garden

on the lawn

! The syntax has no way to determine the
attachment, even if humans can.

Ambiguity in coordinationAmbiguity in coordination

! Vacuous ambiguity of non-branching trees

– this can be avoided

! Legitimate ambiguity

– old men and women

 old [N men and women]

 [NP old men] and [NP women]

– I turned and pushed the cart

 I [V turned and pushed] the cart

 I [VP turned] and [VP pushed the cart]

Grammar Engineering and ambiguityGrammar Engineering and ambiguity

! Large-scale grammars will have lexical and
syntactic ambiguities

! With real data they will interact resulting in
many parses

– these parses are legitimate

– they are not intuitive to humans

! XLE provides tools to manage ambiguity

– grammar writer interfaces

– computation

XLE displayXLE display

! Four windows

– c-structure (top left)

– f-structure (bottom left)

– packed f-structure (top right)

– choice space (bottom right)

! C-structure and f-structure “next” buttons

! Other two windows are packed
representations of all the parses

– clicking on a choice will display that choice in the
left windows

ExampleExample

! I see the girl in the garden

! PP attachment ambiguity

– both ADJUNCTS

– difference in ADJUNCT-TYPE

Packed F-structure and Choice spacePacked F-structure and Choice space Sorting through the analysesSorting through the analyses

! “Next” button on c-structure and then f-
structure windows
– impractical with many choices

– independent vs. interacting ambiguities

– hard to detect spurious ambiguity

! The packed representations show all the
analyses at once
– (in)dependence more visible

– click on choice to view

– spurious ambiguities appear as blank choices
» but legitimate ambiguities may also do so

XLE Ambiguity ManagementXLE Ambiguity Management

The sheep liked the fish.
How many sheep?

How many fish?

The sheep-sg liked the fish-sg.

The sheep-pl liked the fish-sg.

The sheep-sg liked the fish-pl.

The sheep-pl liked the fish-pl.

Options multiplied out

The sheep liked the fish
sg

pl

sg

pl

Options packed

Packed representation is a “free choice” system

– Encodes all dependencies without loss of information

– Common items represented, computed once

– Key to practical efficiency

 … but it’s wrong
It doesn’t encode all dependencies, choices are not free.

Dependent choicesDependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc sah die Katze-nom

Das Mädchen-acc sah die Katze-acc

Das Mädchen sah die Katze
nom

acc

nom

acc
The girl saw the cat

Again, packing avoids duplication

 bad

The girl saw the cat
The cat saw the girl
 bad

Who do you want to succeed?

 I want to succeed John want intrans, succeed trans

 I want John to succeed want trans, succeed intrans

Solution: Label dependent choicesSolution: Label dependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc sah die Katze-nom

Das Mädchen-acc sah die Katze-acc

 bad

The girl saw the cat
The cat saw the girl
 bad

• Label each choice with distinct Boolean variables p, q, etc.

• Record acceptable combinations as a Boolean expression #
• Each analysis corresponds to a satisfying truth-value assignment

 (free choice from the true lines of #’s truth table)

Das Mädchen sah die Katze
 p:nom

 ¬p:acc

 q:nom

 ¬q:acc

(p$¬q)
%

(¬p$q)
=

Ambiguity management:Ambiguity management:

 Shallow Shallow markup markup

! Part of speech marking as filter
I saw her duck/VB.

– accuracy of tagger (very good for English)

– can use partial tagging (verbs and nouns)

! Named entities
– <company>Goldman, Sachs & Co.</company> bought IBM.

– good for proper names and times

– hard to parse internal structure

! Fall back technique if fail
– slows parsing

– accuracy vs. speed

ChosingChosing the most probable parse the most probable parse

! Applications may want one input

! Use stochastic methods to choose

– efficient (XLE English grammar: 5% of parse time)

! Need training data

– partially labelled data ok

 [NP-SBJ They] see [NP-OBJ the girl with the telescope]

Demo

Stochastic Disambiguation

Applications Applications "" Beyond Parsing Beyond Parsing

! Machine translation

! Sentence condensation

! Computer Assisted Language Learning

! Knowledge representation

N best

XLE related language componentsXLE related language components

Sentence

Semantics

Transfer

Train

Property

definitions

Disambiguate

Property

weights

All

packed

f-structures

Core XLE:

Parse/Generate

Lexicons

Grammar

Morph FST

Named entities

Token FST

KB

Machine TranslationMachine Translation

! The Transfer Component

! Transferring features/F-structures

– adding information

– deleting information

! Examples

Basic IdeaBasic Idea

! Parse a string in the source language

! Rewrite/transfer the f-structure to that of the
target language

! Generate the target string from the
transferred f-structure

Urdu to English MTUrdu to English MT

Urdu: nadya ne bola

f-structure Representation

Transfer

English f-structure

English: Nadya spoke.

Parser Generator

from Urdu structure from Urdu structure ……

parse: nadya ne bola

Urdu f-structure

…… to English structure to English structure

TransferUrdu f-structure

English:

Nadya spoke.

Generator

English f-structure

The Transfer ComponentThe Transfer Component

! Prolog based

! Small hand-written set of transfer rules
– Obligatory and optional rules (possibly multiple output for

single input)

– Rules may add, delete, or change parts of f-structures

! Transfer operates on packed input and output

! Developer interface: Component adds new menu
features to the output windows:
– transfer this f-structure

– translate this f-structure

– reload rules

Sample Transfer RulesSample Transfer Rules

verb_verb(%Urdu, %English) ::

 PRED(%X, %Urdu), +VTYPE(%X,%main) ==>

PRED(%X,% English).

verb_verb(pI,drink).

verb_verb(dEkH,see).

verb_verb(A,come).

Template

Rules

%perf plus past, get perfect past

 ASPECT(%X,perf), + TENSE(%X,past) ==>

PERF(%X,+), PROG(%X,-).

%only perf, get past

 ASPECT(%X,perf) ==> TENSE(%X,past), PERF(%X,-),

PROG(%X,-).

GenerationGeneration

! Use of generator as filter since transfer rules
are independent of grammar

– not constrained to preserve grammaticality

! Robustness techniques in generation:

– Insertion/deletion of features to match lexicon

– For fragmentary input from robust parser
grammatical output guaranteed for separate
fragments

Adding featuresAdding features

! English to French translation:

– English nouns have no gender

– French nouns need gender

– Solution: have XLE add gender

 the French morphology will control the value

! Specify additions in configuration file (xlerc):

– set-gen-adds add "GEND"

– can add multiple features:

 set-gen-adds add "GEND CASE PCASE"

– XLE will optionally insert the feature

Note: Unconstrained additions make generation undecidable

ExampleExample

[PRED 'dormir<SUBJ>'

 SUBJ [PRED 'chat'

 NUM sg

 SPEC def]

 TENSE present]

[PRED 'dormir<SUBJ>'

 SUBJ [PRED 'chat'

 NUM sg

 GEND masc

 SPEC def]

 TENSE present]

The cat sleeps. -> Le chat dort.

Deleting featuresDeleting features

! French to English translation
– delete the GEND feature

! Specify deletions in xlerc
– set-gen-adds remove "GEND"

– can remove multiple features

 set-gen-adds remove "GEND CASE PCASE"

– XLE obligatorily removes the features

 no GEND feature will remain in the f-structure

– if a feature takes an f-structure value, that f-
structure is also removed

Changing valuesChanging values

! If values of a feature do not match between
the input f-structure and the grammar:

– delete the feature and then add it

! Example: case assignment in translation

– set-gen-adds remove "CASE"

 set-gen-adds add "CASE"

– allows dative case in input to become accusative

 e.g., exceptional case marking verb in input
language but regular case in output language

Machine TranslationMachine Translation

MT Demo

Sentence condensationSentence condensation

! Goal: Shrink sentences chosen for summary

! Challenges:
1. Retain most salient information of input

2. and guarantee grammaticality of output

! Example:

 Original uncondensed sentence
 A prototype is ready for testing, and Leary hopes to set

requirements for a full system by the end of the year.

 One condensed version
 A prototype is ready for testing.

Sentence Sentence CondensationCondensation

! Use:
– XLE’s transfer component

– generation

– stochastic LFG parsing tools

– ambiguity management via packed representations

! Condensation decisions made on f-structure
instead of context-free trees or strings

! Generator guarantees grammatical well-
formedness of output

! Powerful MaxEnt disambiguation model on
transfer output

Source

Condensation SystemCondensation System

XLE

Parsing
Target Packed

F-structures

XLE

Generation
 Packed

Condens.Transfer

n
 b

e
s
t

Pargram
English

Condensation
rules

Log-linear
model

S
to

c
h

a
s
ti
c
 S

e
le

c
ti
o

n

Simple combination of reusable system components

Sample Transfer Rules:Sample Transfer Rules:

sentence condensationsentence condensation

! Rule optionally removes a non-negative
adjunct Adj by deleting the fact that Adj is
contained within the set of adjuncts AdjSet
associated with expression X.

! Rule-traces are added automatically to record
relation of transfered f-structure to original f-
structure for stochastic disambiguation.

+ADJUNCT(%X,%AdjSet), in-set(%Adj,%AdjSet),

 -ADJUNCT-TYPE(%Adj,neg) ?=> del-node(%Adj).

OneOne f f-structure for Original Sentence-structure for Original Sentence Packed alternatives after transfer condensationPacked alternatives after transfer condensation

Selection <a:1,b:1>Selection <a:1,b:1> Selection <a:2>Selection <a:2>

Generated condensed stringsGenerated condensed strings

A prototype is ready.

A prototype is ready for testing.

Leary hopes to set requirements for a full system.

A prototype is ready and Leary hopes to set requirements for a full
system.

A prototype is ready for testing and Leary hopes to set requirements
for a full system.

Leary hopes to set requirements for a full system by the end of the
year.

A prototype is ready and Leary hopes to set requirements for a full
system by the end of the year.

A prototype is ready for testing and Leary hopes to set requirements
for a full system by the end of the year.

All grammatical!

Transfer Rules used in MostTransfer Rules used in Most

Probable Condensation <a:2>Probable Condensation <a:2>

! Rule-traces in order of application
– r13: Keep of-phrases (of the year)

– r161: Keep adjuncts for certain heads, specified
elsewhere (system)

– r1: Delete adjunct of first conjunct (for testing)

– r1: Delete adjunct of second conjunct (by the end
of the year)

– r2: Delete (rest of) second conjunct (Leary hopes
to set requirements for a full system),

– r22: Delete conjunction itself (and).

Condensation discussionCondensation discussion

! Ranking of system variants shows close correlation

between automatic and manual evaluation.

! Stochastic selection of transfer-output crucial: 50%
reduction in error rate relative to upper bound.

! Selection of best parse for transfer-input less

important: Similar results for manual selection and
transfer from all parses.

! Compression rate around 60%: less aggressive than
human condensation, but shortest-string heuristic is
worse.

Computer Assisted LanguageComputer Assisted Language

Learning (CALL) OutlineLearning (CALL) Outline

! Goals

! Method

! Augmenting the English ParGram Grammar
via OT Marks

! Generating Correct Output

XLE and XLE and CALLCALL

! Goal: Use large-scale intelligent grammars to
assist in grammar checking

– identify errors in text by language learners

– provide feedback as to location and type of error

– generate back correct example

! Method: Adapt English ParGram grammar to
deal with errors in the learner corpus

XLE CALL system methodXLE CALL system method

! Grammar: Introduce special UNGRAMMATICAL

feature at f-structure for feedback as to the type of
error

! Parse CALL sentence

! Generate back possible corrections

! Evaluated on developed and unseen corpus
i. accuracy of error detection

ii. value of suggestions or possible feedback

iii. range of language problems/errors covered

iv. speed of operation

Adapting the English GrammarAdapting the English Grammar

! The standard ParGram English grammar was
augmented with:

– OT marks for ungrammatical constructions

– Information for feedback: Example: Mary happy.
UNGRAMMATICAL {missing-be}

top level f-structure

! Parametrization of the generator to allow for
corrections based on ungrammatical input.

F-structure: Mary happy.F-structure: Mary happy.

!

Example modificationsExample modifications

! Missing copula (Mary happy.)

! No subj-verb agreement (The boys leaves.)

! Missing specifier on count noun (Boy leaves.)

! Missing punctuation (Mary is happy)

! Bad adverb placement (Mary quickly leaves.)

! Non-fronted wh-words (You saw who?)

! Missing to infinitive (I want disappear.)

Using OT MarksUsing OT Marks

! OT marks allow one analysis to be prefered
over another

! The marks are introduced in rules and lexical
entries
 @(OT-MARK ungrammatical)

! The parser is given a ranking of the marks

! Only the top ranked analyses appear

OT Marks in the CALL grammarOT Marks in the CALL grammar

! A correct sentence triggers no marks

! A sentence with a known error triggers a
mark ungrammatical

! A sentence with an unknown error triggers a
mark fragment

! no mark < ungrammatical < fragment
– the grammar first tries for no mark

– then for a known error

– then a fragment if all else fails

F-structure: Boy happy.F-structure: Boy happy.

!

!

Generation of correctionsGeneration of corrections

! Remember that XLE allows the generation of
correct sentences from ungrammtical input.

! Method:

– Parse ungrammatical sentence

– Remove UNGRAMMATICAL feature for generation

– Generate from stripped down ungrammatical

f-structure

Underspecified GenerationUnderspecified Generation

! XLE generation from an underspecified f-structure
(information has been removed).

! Example: generation from an f-structure without
tense/aspect information.

 John sleeps (w/o TNS-ASP)

& All tense/aspect
variations

John

 { { will be

 |was

 |is

 |{has|had} been}

 sleeping

 |{{will have|has|had}|} slept

 |sleeps

 |will sleep}

CALL Generation exampleCALL Generation example

! parse "Mary happy."

 generate back:

 Mary is happy.

! parse "boy arrives."

 generate back:
 { This | That | The | A } boy arrives.

CALL evaluation and conclusionsCALL evaluation and conclusions

! Preliminary Evaluation promising:

– Word 10 out of 50=20% (bad user feedback)

– XLE 29 out of 50=58% (better user feedback)

! Unseen real life student production

– Word 5 out of 11 (bad user feedback)

– XLE 6 out 11 (better user feedback)

Knowledge RepresentationKnowledge Representation

! From Syntax to Semantics

! From Semantics to Knowledge
Representation

! Text Analysis

! Question/Answering

ICON 2007: XLE tutorial

Text Text –– KR KR –– Text Text

F-structure
Abstract KR

LFG Parsing AKR Mapping
Text

Sources

Question

ECD

Target KRR

Text

to user

F-Structure

Composition

XLE/LFG

Generation

Logic Mapping

Cyc

ICON 2007: XLE tutorial

Rewrite Rewrite Rules for KR mappingRules for KR mapping

All operate on packed representations:

! F-structure to semantics
– Semantic normalization, verbnet roles, wordnet senses,

lexical class information

! Semantics to Abstract Knowledge Representation (AKR)
– Separating conceptual, contextual & temporal structure

! AKR to F-structure
– For generation from KR

! Entailment & contradiction detection rules
– Applied to AKR

ICON 2007: XLE tutorial

Semantic RepresentationSemantic Representation
Someone failed to paySomeone failed to pay

in_context(t, past(fail22))
in_context(t, role(Agent, fail22, person1))
in_context(t, role(Predicate, fail22, ctx(pay19)))
in_context(ctx(pay19), cardinality(person1, some))
in_context(ctx(pay19), role(Agent, pay19, person1))
in_context(ctx(pay19), role(Recipient, pay19, implicit_arg94))
in_context(ctx(pay19), role(Theme, pay19, implicit_arg95))

lex_class(fail22, [vnclass(unknown), wnclass(change),
 temp-rel, temp_simul, impl_pn_np, prop-attitude])
lex_class(pay19, [vnclass(unknown), wnclass(possession)])),
word(fail22, fail, verb, 0, 22, t, [[2505082], [2504178], …, [2498138]])
word(implicit_arg:94, implicit, implicit, 0, 0, ctx(pay19), [[1740]])
word(implicit_arg:95, implicit, implicit, 0, 0, ctx(pay19), [[1740]])
word(pay19, pay, verb, 0, 19, ctx(pay19),
 [[2230669], [1049936], …, [2707966]])
word(person1, person, quantpro, 0, 1, ctx(pay19),
 [[7626, 4576, …, 1740]])

ICON 2007: XLE tutorial

AKRAKR
Someone failed to paySomeone failed to pay

Conceptual Structure:
 subconcept(fail22, [[2:2505082], [2:2504178], …, [2:2498138]])
 role(Agent, fail22, person1)
 subconcept(person1, [[1:7626, 1:4576, …, 1:1740]])
 role(cardinality_restriction, person1, some)
 role(Predicate, fail22, ctx(pay19))
 subconcept(pay19, [[2:2230669], [2:1049936], …, [2:2707966]])
 role(Agent, pay19, person1)

Contextual Structure:
 context(t) context(ctx(pay19))
 context_lifting_relation(antiveridical, t, ctx(pay19))
 context_relation(t, ctx(pay19), Predicate(fail22))
 instantiable(fail22, t)
 uninstantiable(pay19, t)
 instantiable(pay19, ctx(pay19))

Temporal Structure:
 temporalRel(startsAfterEndingOf, Now, fail22)
 temporalRel(startsAfterEndingOf, Now, pay19) ICON 2007: XLE tutorial

Semantic SearchSemantic Search Architecture Architecture

Inference -

sensitive

lexical

resources

Source

Documents

Text

Passages
Queries

Query
AKR

Query
index
terms

Passage, AKR
+ index terms

Ranked,

highlighted

answers

ASKER
Knowledge repository

Passages + AKR
with semantic index

Normalize to AKR
(Abstract Knowledge Representation)

Extract semantic index terms

Entailment &

Contradiction

Detection

Retrieved
passages

+ AKR

Inference -

sensitive

lexical

resources

Inference -

sensitive

lexical

resources

Source

Documents

Text

Passages
Queries

Query
AKR

Query
index
terms

Passage, AKR
+ index terms

Ranked,

highlighted

answers

ASKER
Knowledge repository

Passages + AKR
with semantic index

ASKER
Knowledge repository

Passages + AKR
with semantic index

Normalize to AKR
(Abstract Knowledge Representation)

Extract semantic index terms

Normalize to AKR
(Abstract Knowledge Representation)

Extract semantic index terms

Entailment &

Contradiction

Detection

Entailment &

Contradiction

Detection

Retrieved
passages

+ AKR

ICON 2007: XLE tutorial

Entailment & Contradiction DetectionEntailment & Contradiction Detection

1. Map texts to packed AKR

2. Align concept & context terms between AKRs

3. Apply entailment & contradiction rules to aligned AKRs
1. eliminate entailed facts

2. flag contradictory facts

4. Inspect results
1. Entailment = all query facts eliminated

2. Contradiction = any contradiction flagged

3. Unknown = otherwise

! Properties

– Combination of positive aspects of graph matching
(alignment) and theorem proving (rewriting)

– Ambiguity tolerant

ICON 2007: XLE tutorial

ECD: Illustrative ExampleECD: Illustrative Example

! “A little girl disappeared” entails
“A child vanished”

! A trivial example

– Could be handled by a simpler approach
(e.g. graph matching)

– Used to explain basics of ECD approach

ICON 2007: XLE tutorial

RepresentationsRepresentations

AKR: A little girl disappeared.

context(t),
instantiable(disappear4, t)
instantiable(girl3, t)
temporalRel(startsAfter, Now, disappear4)
role(Theme, disappear4, girl3)
role(cardinality_restriction, girl3, sg)
role(subsective, girl3, little1)

subconcept(little1, [[1443454…], …])
subconcept(disappear4,
 [[422658], …, [220927]])
subconcept(girl3,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

AKR: A child vanished

context(t),
instantiable(vanish2, t)
instantiable(child1, t)
temporalRel(startsAfter, Now, vanish2)
role(Theme, vanish2, child1)
role(cardinality_restriction, child1, sg)

subconcept(vanish2,
 [[422658], …, [2136731]])
subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])

"

Contextual, temporal and conceptual subsumption indicates entailment

ICON 2007: XLE tutorial

AlignmentAlignment
! Align terms based on conceptual overlap

***TABLE of possible Query-Passage alignments ***

vanish2 [1.0–disappear4, 0.0–little1, 0.0–girl3]
child1 [0.78–girl3, 0.0–little1, 0.0–disappear4]
t [1.0–t]

! Determined by subconcepts

– Degree of hypernym overlap

vanish:2 = disappear:4 on sense 1

child:1 ' girl:3 on sense 2

subconcept(vanish2,
 [[422658], …, [2136731]])
subconcept(disappear4,
 [[422658], …, [220927]])

subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])
subconcept(girl3,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

ICON 2007: XLE tutorial

Impose Alignment & LabelImpose Alignment & Label

FactsFacts
P-AKR: A little girl disappeared.

P:context(t)
P:instantiable(vanish2, t)
P:instantiable(child1, t)
P:temporalRel(startsAfter, Now, vanish2)
P:role(Theme, vanish2, child1)
P:role(cardinality_restriction, child1, sg)
P:role(subsective, child1, little1)
P:subconcept(little1, [[1443454…], …])
P:subconcept(vanish2,
 [[422658], …, [220927]])
P:subconcept(child1,
 [[9979060…1740],
 [9934281…9771976…1740],
 …, [9979646…1740]])

Q-AKR: A child vanished

Q:context(t),
Q:instantiable(vanish2, t)
Q:instantiable(child1, t)
Q:temporalRel(startsAfter, Now, vanish2)
Q:role(Theme, vanish2, child1)
Q:role(cardinality_restriction, child1, sg)
Q:subconcept(vanish2,
 [[422658], …, [2136731]])
Q:subconcept(child1,
 [[9771320, …1740],
 [9771976, …1740],
 …, [9772490, …, 1740]])

girl3 // child1
disappear4 // vanish2

! Combined P-AKR and Q-AKR used as input to
entailment and contradiction transfer rules

ICON 2007: XLE tutorial

Entailment & ContradictionEntailment & Contradiction

RulesRules

! Packed rewrite rules that

– Eliminate Q-facts that are entailed by P-facts

– Flag Q-facts that are contradicted by P-facts

! Rule phases

– Preliminary concept subsumption

– Refine concept subsumption via role restrictions

– Entailments & contradictions from instantiable /
uninstantiable facts

– Entailments & contradictions from other relations

ICON 2007: XLE tutorial

Preliminary Preliminary Subsumption Subsumption RulesRules

e.g. “girl” and “child”

Q:subconcept(%Sk, %QConcept)
P:subconcept(%Sk, %PConcept)
{%QConcept ' %PConcept}

==>
prelim_more_specific(%Sk, P).

e.g. “disappear” and “vanish”

Q:subconcept(%Sk, %QConcept)
P:subconcept(%Sk, %PConcept)
{%QConcept = %PConcept}
==>
prelim_more_specific(%Sk, mutual).

prelim_more_specific(vanish2, mutual)
prelim_more_specific(child1, P)

! Example rules:

! Apply to subconcept facts to give:

ICON 2007: XLE tutorial

Role Restriction RulesRole Restriction Rules

“little girl” more specific than “child”

prelim_more_specific(%Sk, %PM)
{ member(%PM, [P, mutual]) }
P:role(%%, %Sk, %%)
-Q:role(%%, %Sk, %%)
==>
more_specific(%Sk, P).

! Example rules:

! Rules apply to give: more_specific(child1, P)
more_specific(vanish2, P)

ICON 2007: XLE tutorial

Instantiation RulesInstantiation Rules

Q-instantiability entailed

more_specific(%Sk, P),
P:instantiable(%Sk, %Ctx)
Q:instantiable(%Sk, %Ctx)
==>
0.

Q-uninstantiability contradicted

more_specific(%Sk, P),
P:instantiable(%Sk, %Ctx)
Q:uninstantiable(%Sk, %Ctx)
==>
contradiction.

! Remove entailed instantiabilities and
flag contradictions:

ICON 2007: XLE tutorial

ECD SummaryECD Summary

! Combination of graph matching and inference
on deep representations

! Use of transfer system allows ECD on packed
/ ambiguous representations

– No need for early disambiguation

– Passage and query effectively disambiguate each
other

! ECD rules currently geared toward very high
precision detection of entailments &
contradictions

ICON 2007: XLE tutorial

Semantic/AKR IndexingSemantic/AKR Indexing
! ECD looks for inferential relations between a

question and a candidate answer

! Semantic/AKR search retrieves candidate
answers from a large database of representations

! Text representations are indexed by

– Concepts referred to

– Selected role relations

! Basic retrieval from index

– Find text terms more specific than query terms

– Ensure query roles are present in retrieved text

ICON 2007: XLE tutorial

Semantic/AKR IndexingSemantic/AKR Indexing
! Semantic/AKR search retrieves candidate

answers from a large database of representations
– Simple relevance retrieval (graph/concept subsumption)

A girl paid. Did a child pay?

» Text term more specific than query term

! Inferentially enhanced retrieval

– Recognizing when text terms need to be less specific
than query
Someone forgot to pay. Did everyone pay?

» Text term is less specific than query term

– Looser matching on roles present in text

! Retrievals are then fed to ECD module

ICON 2007: XLE tutorial

Semantic LexicalSemantic Lexical Resources Resources

! Semantics/KR applications require additional
lexical resources
– use existing resources when possible

– XLE transfer system incorporates basic database
to handle large lexicons efficiently

! Unified (semantic) lexicon
– Ties existing resources to XLE lexicons

(WordNet, VerbNet, ontologies, …)

– Additional annotation of lexical classes
(fail vs manage, believe vs know)

– Used in mapping f-structures to semantics/AKR

ICON 2007: XLE tutorial

! Demo

! AKR and ECD

Advancing Open Text Semantic AnalysisAdvancing Open Text Semantic Analysis

! Deeper, more detailed linguistic analysis

– Roles, concepts, normalization of f-structures

! Canonicalization into tractable KR

– (un)instantiability

– temporal relations

! Ambiguity enabled semantics and KR

– Common packing mechanisms at all levels of
representation

– Avoid errors from premature disambiguation

Driving force: Entailment & Contradiction Detection (ECD)

ECD and Maintaining Text DatabasesECD and Maintaining Text Databases

Tip 27057

Problem: Left cover damage

Cause: The left cover safety cable is
breaking, allowing the left cover to

pivot too far, breaking the cover.

Solution: Remove the plastic sleeve
from around the cable. Cutting the
plastic off of the cable makes the
cable more flexible, which prevents
cable breakage. Cable breakage is a
major source of damage to the left
cover.

Tip 27118

Problem: The current safety cable
used in the 5100 Document Handler
fails prematurely causing the Left
Document Handler Cover to break.

Cause: The plastic jacket made the
cable too stiff. This causes stress to
be concentrated on the cable ends,
where it eventually fails.

Solution: When the old safety cable
fails, replace it with the new one
[12K1981], which has the plastic
jacket shortened.

Maintain quality of text database by identifying areas
of redundancy and conflict between documents

Deep, canonical, ambiguity-enabled semantic processing

is needed to detect entailments & contradictions like these.

common
 sense knowledge

Architecture for Document ECDArchitecture for Document ECD

Sentential
Semantics

Discourse
Semantics

logical
representation
of sentences

macro
text

structure

LFG
Parser

grammatical
representation
of sentences

Linguistic
Knowledge

Rep’n
Builder

knowledge
representation

Domain elements
Belts, cables, ..
 Repair tasks

 Manufacturing

 defects

Semantic
Lexicon

Discourse
Grammar
and Rules

Structure
Matcher

Rep’n
Knowledge
and Rules

Higher level structures

Plans
Action Sequences
Hypotheses

NL#KR rules

Gradable
 predicate
Thematic
 roles

XLE: SummaryXLE: Summary

! XLE

– parser (tree and dependency output)

– generator (reversible parsing grammar)

– powerful, efficient and flexible rewrite system

! Grammar engineering makes deep grammars
feasible

– robustness techniques

– integration of shallow methods

! Ordered rewrite system to manipulate grammar
output

XLE: ApplicationsXLE: Applications

! Many current applications can use shallow
grammars

! Fast, accurate, broad-coverage deep
grammars enable extensions to existing
applications and new applications

– semantic search

– summarization/condensation

– CALL and grammar checking

– entity and entity relation detection

– machine translation

XLE: ApplicationsXLE: Applications

! Powerful methods that allow innovative
solutions:

– Integration of shallow methods (chunking,
statistical information)

– Integration of optimality marks

– rewrite system

– innovative semantic representation

Contact informationContact information

! Miriam Butt
miriam.butt@uni-konstanz.de

http://ling.uni-konstanz.de/pages/home/butt

! Tracy Holloway King
thking@parc.com

http://www.parc.com/thking

! Many of the publications in the bibliography are available
from our websites.

! Information about XLE (including link to documentation):

http://www.parc.com/istl/groups/nltt/xle/default.html

BibliographyBibliography
XLE Documentation:

http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html

Butt, M., T.H. King, M.-E. Niño, and F. Segond. 1999. A Grammar Writer's
Cookbook. Stanford University: CSLI Publications.

Butt, Miriam and Tracy Holloway King. 2003. Grammar Writing, Testing, and
Evaluation. In A. Farghaly (ed.) Handbook for Language Engineers. CSLI
Publications. pp. 129-179.

Butt, M., M. Forst, T.H. King, and J. Kuhn. 2003. The Feature Space in
Parallel Grammar Writing. ESSLLI 2003 Workshop on Ideas and
Strategies for Multilingual Grammar Development.

Butt, M., H. Dyvik, T.H. King, H. Masuichi, and C. Rohrer. 2002. The Parallel
Grammar Project. Proceedings of COLING2002, Workshop on Grammar
Engineering and Evaluation pp. 1-7.

Butt, M., T.H. King, and J. Maxwell. 2003. Productive encoding of Urdu
complex predicates in the ParGram Project. In Proceedings of the
EACL03: Workshop on Computational Linguistics for South Asian
Languages: Expanding Synergies with Europe. pp. 9-13.

Butt, M. and T.H. King. 2003. Complex Predicates via Restriction. In
Proceedings of the LFG03 Conference. CSLI On-line Publications. pp.
92-104.

Cetinoglu, O. and K.Oflazer. 2006. Morphology-Syntax Interface for Turkish
LFG. Proceedings of COLING/ACL2006.

Crouch, D. 2005. Packed rewriting for mapping semantics to KR. In
Proceedings of the International Workshop on Computational Semantics.

Crouch, D. and T.H. King. 2005. Unifying lexical resources. In Proceedings of
the Verb Workshop. Saarbruecken, Germany.

Crouch, D. and T.H. King. 2006. Semantics via F-structure rewriting. In
Proceedings of LFG06. CSLI On-line Publications.

Frank, A., T.H. King, J. Kuhn, and J. Maxwell. 1998. Optimality Theory Style
Constraint Ranking in Large-Scale LFG Grammars Proceedings of the
LFG98 Conference. CSLI On-line Publications.

Frank, A. et al. 2006. Question Answering from Structured Knowledge
Sources. Journal of Applied Logic, Special Issue on Questions and
Answers: Theoretical and Applied Perspectives.

Kaplan, R., T.H. King, and J. Maxwell. 2002. Adapting Existing Grammars:
The XLE Experience. Proceedings of COLING2002, Workshop on
Grammar Engineering and Evaluation, pp. 29-35.

Kaplan, Ronald M. and Jürgen Wedekind. 2000. LFG generation produces
context-free languages. In Proceedings of the 18th International
Conference on Computational Linguistics (COLING2000), Saarbrücken.

Kaplan, R.M., S. Riezler, T. H. King, J. T. Maxwell III, A. Vasserman, R.
Crouch. 2004. Speed and Accuracy in Shallow and Deep Stochastic
Parsing. In Proceedings of the Human Language Technology Conference
and the 4th Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL'04), Boston, MA.

Kaplan, R. M. and P. Newman. 1997. Lexical resource reconciliation in the
Xerox Linguistic Environment. In Computational environments for
grammar development and linguistic engineering, pp. 54-61. Proceedings
of a workshop sponsored by the Association for Computational
Linguistics, Madrid, Spain, July 1997.

Kaplan, R. M., K. Netter, J. Wedekind, and A. Zaenen. 1989. Translation by
structural correspondences. In Proceedings of the 4th Meeting of the
EACL, pp. 272-281. University of Manchester: European Chapter of the
Association for Computational Linguistics. Reprinted in Dalrymple et al.
(editors), Formal Issues in Lexical-Functional Grammar. CSLI, 1995.

Karttunen, L. and K. R. Beesley. 2003. Finite-State Morphology. CSLI
Publications.

Kay, M. 1996. Chart Generation. Proceedings of the ACL 1996, 200-204.
Khader, R. 2003. Evaluation of an English LFG-based Grammar as Error

Checker. UMIST MSc Thesis, Manchester.

Kim, R., M. Dalrymple, R. Kaplan, T.H. King, H. Masuichi, and T. Ohkuma.
2003. Multilingual Grammar Development via Grammar Porting. ESSLLI
2003 Workshop on Ideas and Strategies for Multilingual Grammar
Development.

King, T.H. and R. Kaplan. 2003. Low-Level Mark-Up and Large-scale LFG
Grammar Processing. On-line Proceedings of the LFG03 Conference.

King, T.H., S. Dipper, A. Frank, J. Kuhn, and J. Maxwell. 2000. Ambiguity
Management in Grammar Writing. Linguistic Theory and Grammar
ImplementationWorkshop at European Summer School in Logic, Language,
and Information (ESSLLI-2000).

Masuichi, H., T. Ohkuma, H. Yoshimura and Y. Harada. 2003. Japanese
parser on the basis of the Lexical-Functional Grammar Formalism and its
Evaluation, Proceedings of The 17th Pacific Asia Conference on Language,
Information and Computation (PACLIC17), pp. 298-309.

Maxwell, J. T., III and R. M. Kaplan. 1989. An overview of disjunctive constraint
satisfaction. In Proceedings of the International Workshop on Parsing
Technologies, pp. 18-27. Also published as `A Method for Disjunctive
Constraint Satisfaction', M. Tomita, editor, Current Issues in Parsing
Technology, Kluwer Academic Publishers, 1991.

ICON 2007: XLE tutorial

Riezler, S., T.H. King, R. Kaplan, D. Crouch, J. Maxwell, and M.
Johnson. 2002. Parsing the Wall Street Journal using a Lexical-
Functional Grammar and Discriminative Estimation Techniques.
Proceedings of the Annual Meeting of the Association for
Computational Linguistics, University of Pennsylvania.

Riezler, S., T.H. King, R. Crouch, and A. Zaenen. 2003. Statistical
sentence condensation using ambiguity packing and stochastic
disambiguation methods for Lexical-Functional Grammar.
Proceedings of the Human Language Technology Conference
and the 3rd Meeting of the North A merican Chapter of the
Association for Computational Linguistics (HLT-NAACL'03).

Shemtov, H. 1996. Generation of Paraphrases from Ambiguous
Logical Forms. Proceedings of COLING 1996, 919-924.

Shemtov, H. 1997. Ambiguity Management in Natural Language
Generation. PhD thesis, Stanford University.

Umemoto, H. 2006. Implementing a Japanese Semantic Parser
Based on Glue Approach. Proceedings of The 20th Pacific Asia
Conference on Language, Information and Computation.

