
Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Last Time

• imperatives (empty nodes)

- Parsing

- Generation

• coordination

- regular expression macros

- metarulemacros

1. Integrating a Finite-State Morphological Analyzer
• Morphology Section: Analyze

• Sublexical rules

• Sublexical entries

• The -unknown entry

2. The XLE Lexicon Lookup Model

This Time: Lesson 7

Interfacing finite-state transducers
! Maintaining a full-form lexicon is tedious.
! Many lexicon entries are the same (e.g., nouns).
! Is there a way to get information from somewhere

about
– the category of a word (Part-of-Speech; POS)
– along with information about morphosyntax

(tense, mood, case, number, person, etc)

Finite-State Morphologies (FSM)
! Yes – there is!
! Finite-state morphological analyzers

– often commercially produced
– often available from research institutions
– very easy to implement on your own
– finite amount of time necessary to build one
– efficient
– can be composed with tokenizers
– easy to integrate into XLE

Software for Implementing FSMs
! XFST (PARC/Xerox)

– www.fsmbook.com
– Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State

Morphology. CSLI Publications.

! FOMA: Finite-State Compiler and C Library
– Hulden, Mans. 2009. Foma: a finite-state compiler and library.

Proceedings of the 12th EACL Conference, 29-32.

! SFST
– Helmut Schmid, A Programming Language for Finite State

Transducers, Proceedings of the 5th International Workshop on
Finite State Methods in Natural Language Processing
(FSMNLP 2005), Helsinki, Finland

Software for Implementing FSMs
! OpenFST (Google Research and NYU)

! HFST (Helsinki)
! Kleene Programming Language (Beesley)

Interfacing finite-state transducers
! Cascade of finite-state transducers is specified

in MORPHOLOGY section.
! At least two subsections:

– TOKENIZE
– ANALYZE

! By default, the transducers listed are used both
for parsing and for generation.

! This behavior can be altered by prefixing the
names of transducer files with P! or G!

Tokenization
! Recall that in the first grammars only white

spaces were considered as token boundaries.
! However, there are more kinds of token

boundaries in real-word text:
– Punctuation has to be split off the preceding token.
– Some white spaces should not be treated as token

boundaries, e.g. “Sri Lanka” (MWE).
– Upper-case letters at sentence beginnings should

optionally be lower-cased.
! A finite-state tokenizer takes care of these

things.

Tokenization

Integrated from Starter Grammar when we did
punctuation.

DEMO ENGLISH MORPHOLOGY (1.0)

TOKENIZE:

P!basic-parse-tok.fst G!default-gen-tokenizer.fst

Finite-state morphologies
Map surface forms to canonical form (lemma) and
series of “morphological” tags.

Examples:
rode ride +Verb +PastTense +123P
rides ride +Verb +Pres +3sg
 ride +Noun +Pl
children child +Noun +Pl

Both generation and parsing directions available.

Interfacing Finite-state Morphology
! From XLE’s perspective, the output of a FSM

needs to be parsed, just like a string.

ride +Verb +Pres +3sg

! So we need a (sublexical) rule that can parse a
given sequence of lemma+tags.

! This means that we need lexical entries for the
lemma and all of the tags.
– They are treated as (sublexical) terminal nodes.
– We can also code functional information in the

lexical entries.

Interfacing Finite-state Morphology
! Sublexical lexicon entries look just like regular

lexicon entries.
! Difference: morphcode XLE instead of *.

+Pres TNS XLE @VPRES.

! This signifies that the lexical look up is being
done with reference to a morphological
analyzer.

! In contrast, * tells XLE to take the lexical item
“as is” (i.e., as a fully inflected lexical item).

Lexical Look up in XLE
! XLE has a very powerful and complex

mechanism for lexical entry look up.
! Can combine entries from different files and

block readings.
! The * is useful for items that the morphological

analyzer cannot deal well with in terms of
grammar writing.

– Functional elements with a specialized role in the
grammar (e.g., auxiliaries).

– Elements that do not inflect (much).

– Punctuation (take “as is”, no morphological analysis)

Sublexical Rules

! The sublexical entries corresponding to the tags
produced by the FSM are treated as sublexical
c-structure categories (terminal nodes).

! They must be parsed by sublexical rules
– These look like regular rules.
– Can have f-annotations like regular rules.
– Difference: Sublexical categories are marked with

the suffix _BASE.

Sublexical Rules and Lexical Entries

V --> V-S_BASE
 V-POS_BASE
 { TNS_BASE
 PERS_BASE
 | ASP_BASE}.

+Verb V-POS XLE .
+Pres TNS XLE @VPRES.
+Prog ASP XLE @VPROG.
+3sg PERS XLE @S-AGR.
ride V-S XLE @(TRANS %stem).

ride +Verb +Pres +3sg

Demo

grammar6.lfg
testsuite6.lfg

verbs via FSM

The unknown Entry
! Lemmas with non-predictable subcategorization

frames must be listed in the lexicon.

hate V-S XLE @(TRANS %stem).
donate V-S XLE @(DITRANS %stem).

! Other lemmas with predictable information can be
dealt with by the -unknown entry

-unknown A-S XLE @(PRED %stem);
 N-S XLE @(PRED %stem).

The unknown Entry
! The unknown entry is a very powerful device.
! Saves effort of individually specifying lexical

items that belong to the same class.
! In our grammars it should now become

unnecessary to specify nouns, adjectives and
adverbs separately.

! Verbs, auxiliaries, determiners and pronouns
contain specialized information.

! For these it is better to write explicit lexical
entries.

XLE Lookup Model
! Recall: we can have only one entry per

headword per lexicon section.
! But – there are situations in which the same

headword may be covered by
– an explicit entry
– and by an-unknown entry

! In order to for allow this, XLE uses edit entries.
! The possibilities allowed by XLE are very

complex – see the XLE documentation.
! Here, just two examples.

XLE Lookup Model – ETC
! ETC signals that other entries are allowed.
! So if another entry for the same headword is

encountered, this entry is added to the entry
that has already been processed.

! Example: noun version of sleep coming from
the unknown entry is added to the explicitly
specified verb version.

sleep V-S @(INTRANS sleep); ETC.
-unknown N-S @(PRED %stem).

XLE Lookup Model – ONLY
! ONLY signals that this is the only entry.
! So if another entry for the same headword is

encountered, this entry is ignored by XLE.
! Example:

– the noun version of sleep coming from the
unknown entry is ignored

– only the verb version of sleep is used by the
grammar.

sleep V-S @(INTRANS sleep); ONLY.
-unknown N-S @(PRED %stem).

Practical Work

! This concludes Lesson 7.
! The practical work you should do now is

detailed in Exercise 7.
! You will practice with

– integrating a finite-state morphological analyzer
– writing sublexical rules for nouns and adjectives
– writing sublexical entries for the tags associated

with nouns and adjectives

