Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Last Time

® imperatives (empty nodes)
- Parsing
- Generation

e coordination

- regular expression macros

- metarulemacros

This Time: Lesson 7

1. Integrating a Finite-State Morphological Analyzer
* Morphology Section: Analyze
* Sublexical rules
* Sublexical entries

* The -unknown entry

2. The XLE Lexicon Lookup Model

Interfacing finite-state transducers

® Maintaining a full-form lexicon is tedious.

® Many lexicon entries are the same (e.g., nouns).

® |s there a way to get information from somewhere
about

— the category of a word (Part-of-Speech; POS)

— along with information about morphosyntax
(tense, mood, case, number, person, etc)

Finite-State Morphologies (FSM)

® Yes — there is!

® Finite-state morphological analyzers
— often commercially produced
— often available from research institutions
— very easy to implement on your own
— finite amount of time necessary to build one
— efficient
— can be composed with tokenizers
— easy to integrate into XLE

Software for Implementing FSMs
m XFST (PARC/Xerox)

— www.fsmbook.com

— Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State
Morphology. CSLI Publications.

= FOMA: Finite-State Compiler and C Library

— Hulden, Mans. 2009. Foma: a finite-state compiler and library.
Proceedings of the 12th EACL Conference, 29-32.

= SFST

— Helmut Schmid, A Programming Language for Finite State
Transducers, Proceedings of the 5th International Workshop on
Finite State Methods in Natural Language Processing
(FSMNLP 2005), Helsinki, Finland

Software for Implementing FSMs

® OpenFST (Google Research and NYU)
® HFST (Helsinki)
= Kleene Programming Language (Beesley)

Interfacing finite-state transducers

® Cascade of finite-state transducers is specified
iIn MORPHOLOGY section.

® At least two subsections:
— TOKENIZE
— ANALYZE

= By default, the transducers listed are used both
for parsing and for generation.

®= This behavior can be altered by prefixing the
names of transducer files with P! or G!

Tokenization

® Recall that in the first grammars only white
spaces were considered as token boundaries.

= However, there are more kinds of token
boundaries Iin real-word text:
— Punctuation has to be split off the preceding token.

— Some white spaces should not be treated as token
boundaries, e.g. “Sri Lanka” (MWE).

— Upper-case letters at sentence beginnings should
optionally be lower-cased.

m A finite-state tokenizer takes care of these
things.

Tokenization

Integrated from Starter Grammar when we did
punctuation.

DEMO ENGLISH MORPHOLOGY (1.0)

TOKENIZE :
P!basic-parse-tok.fst Gl!default-gen-tokenizer.fst

Finite-state morphologies

Map surface forms to canonical form (lemma) and
series of “morphological” tags.

Examples:
rode ride +Verb +PastTense +123P
rides ride +Verb +Pres +3sg

ride +Noun +P1
children c¢hild +Noun +Pl1

Both generation and parsing directions available.

Interfacing Finite-state Morphology

® From XLE's perspective, the output of a FSM
needs to be parsed, just like a string.

ride +Verb +Pres +3sg

® So we need a (sublexical) rule that can parse a
given sequence of lemma-+tags.

® This means that we need lexical entries for the
lemma and all of the tags.
— They are treated as (sublexical) terminal nodes.

— We can also code functional information in the
lexical entries.

Interfacing Finite-state Morphology

® Sublexical lexicon entries look just like regular
lexicon entries.

= Difference: morphcode XLE instead of *.
+Pres TNS XLE @VPRES.

® This signifies that the lexical look up is being
done with reference to a morphological
analyzer.

® |[n contrast, * tells XLE to take the lexical item
“as is” (i.e., as a fully inflected lexical item).

Lexical Look up in XLE

= XLE has a very powerful and complex
mechanism for lexical entry look up.

B Can combine entries from different files and
block readings.

= The * is useful for items that the morphological

analyzer cannot deal well with in terms of
grammar writing .

— Functional elements with a specialized role in the
grammar (e.g., auxiliaries).

— Elements that do not inflect (much).

— Punctuation (take “as is”, no morphological analysis)

Sublexical Rules

® The sublexical entries corresponding to the tags
produced by the FSM are treated as sublexical
c-structure categories (terminal nodes).

® They must be parsed by sublexical rules
— These look like regular rules.
— Can have f-annotations like regular rules.

— Difference: Sublexical categories are marked with
the suffix BASE.

Sublexical Rules and Lexical Entries

V —--> V-S BASE

V=POS BASE :ccereessssssooooiisiiiiooiiiioaa

(TNS BASE . ride +Verb +Pres +3sg:

PERS BASE
| ASP BASE}.

+Verb V-POS XLE

+Pres TNS XLE QVPRES.
+Prog ASP XLE @VPROG.
+3sg PERS XLE Q@S-AGR.
ride V-S XLE Q@ (TRANS

sstem) .

Demo

grammar®6.lfg
testsuite6.lfg

verbs via FSM

The unknown Entry

® | emmas with non-predictable subcategorization
frames must be listed in the lexicon.

hate V-5 XLE (@ (TRANS %stem) .
donate V-S XLE @ (DITRANS %$stem).

® Other lemmas with predictable information can be
dealt with by the —unknown entry

—-unknown A-S XLE @ (PRED %stem);
N-S XLE @ (PRED %stem) .

The unknown Entry

® The unknown entry is a very powerful device.

Saves effort of individually specifying lexical
items that belong to the same class.

In our grammars it should now become
unnecessary to specify nouns, adjectives and
adverbs separately.

® Verbs, auxiliaries, determiners and pronouns

contain specialized information.

For these it is better to write explicit lexical
entries.

XLE Lookup Model

® Recall: we can have only one entry per
headword per lexicon section.

® But — there are situations in which the same
headword may be covered by

— an explicit entry
— and by an-unknown entry

® |n order to for allow this, XLE uses edit entries.

® The possibilities allowed by XLE are very
complex — see the XLE documentation.

® Here, just two examples.

XLE Lookup Model - ETC

B ETC signals that other entries are allowed.

® So if another entry for the same headword is
encountered, this entry is added to the entry
that has already been processed.

® Example: noun version of sleep coming from
the unknown entry is added to the explicitly
specified verb version.

sleep V-S @ (INTRANS sleep); ETC.
-unknown N-S @ (PRED %stem).

XLE Lookup Model — ONLY

® ONLY signals that this is the only entry.

® So if another entry for the same headword is
encountered, this entry is ignored by XLE.

® Example:

— the noun version of sleep coming from the
unknown entry is ignored

— only the verb version of sleep is used by the
grammar.

sleep V-S @ (INTRANS sleep); ONLY.
-unknown N-S @ (PRED %stem).

Practical Work

® This concludes Lesson 7.

® The practical work you should do now is
detailed in Exercise 7.

® You will practice with
— Integrating a finite-state morphological analyzer
— writing sublexical rules for nouns and adjectives

— writing sublexical entries for the tags associated
with nouns and adjectives

