
Grammar Development
with LFG and XLE

Miriam Butt
University of Konstanz

Last Time

• Adjuncts:

- Adjectives, Adverbs

- PPs

• Punctuation/Tokenization

1. Integration of Optimality Marks
• Disambiguation

• Grammar Parametrization

• Generation

2. Pronouns

This Time: Lesson 5

PP Ambiguity
! In the last exercise, you were asked to

implement various types of PPs.
! PPs are notorious for causing ambiguities in

grammars.
! General term: the PP attachment problem
! Example:

» The zookeeper saw the monkey with the telescope.

! Constraining such ambiguity is a challenge.
! One way to help constrain the ambiguity in

XLE is the use of OT-Marks.

PP Ambiguity
! Corpus studies have shown that PPs are

preferentially attached locally.
! That is, the preference is to attach the PP

with the telescope to monkey.
» The zookeeper saw [the monkey with the telescope].

! But this is only a preference.
! It is not a hard and fast rule of the type we

have been writing so far.

Harnessing Optimality Theory
! Optimality Theory (OT) was invented within

theoretical linguistics.
! Sees a grammar as a system of constraints.
! Classic OT only knows constraints, i.e.

dispreferences.
! OT as implemented in XLE uses both

dispreference marks (default) as well as
preference marks (prefixed with +)
 +Mark = preference

 Mark = dispreference

Harnessing Optimality Theory
! Classic OT assumes a simple hierarchy of

constraints.
! OT as implemented in XLE uses a “structured

hierarchy”.
! That means that the strength of (dis)preference

can be set variably.
! The effect of individual OT-marks can differ

markedly.
! OT-Marks can be added anywhere:

– Rules
– Lexicon
– Templates

Rule Annotation (O-Projection)

! Common errors can be dispreferred rather
than completely ruled out.

! Example: subject-verb agreement for CALL
 Verb3Sg = { (^ SUBJ PERS) = 3
 (^ SUBJ NUM) = sg
 | @(OTMARK BadVAgr) }

! Disprefer parses of ungrammatical structure
– tools for grammar writer to rank rules
– two+ pass system

OT Marks
! OT marks are projected to a separate

projection, the o-structure (o::)
! The o-structure (unlike c- and f-structure) is

not structured.
! It is treated as a “bag” of OT marks.
! That is, all OT marks are collected up in a set.

 OTMarkName $ o::*

OPTIMALITYORDER
! Part of the grammar header
! Can be modified for grammar customization
! OPTIMALITYORDER is for parsing.
! GENOPTIMALITYORDER is for generation.
! OT marks can be organized into groups of equal

rank via round brackets.

OPTIMALITYORDER DisprefMark1
+PrefMark1 DisprefMark2

 (DisprefMark3 DisprefMark4)

Example: Ranking Parses

! Start with the leftmost OT-Mark.
! Keep parses with fewest instances of

DisprefMark1; consider all others suboptimal.
! Among remaining parses, keep those with most

instances of PrefMark1; consider all others
suboptimal.

! Among remaining parses, keep those with
fewest instances of DisprefMark2; consider all
others suboptimal.

! Etc.

OPTIMALITYORDER DisprefMark1
 +PrefMark1 DisprefMark2

Examples: Potential Applications

! Prefer OBL interpretations of PPs over
ADJUNCT interpretations

» The zookeeper waited for the gorilla.

! Prefer ditransitive subcategorization frames
over transitive ones.

» The girl gave her brother money.

! Prefer grammatical constructions, but also
allow ungrammatical ones (e.g., subj-verb
agreement for CALL applications).

Demo

grammar4.lfg
testsuite4.lfg

OT-Marks to constrain
PP ambiguity

OT Ranking with Special Marks
! Order of Marks: Mark3 is preferred to Mark4
 OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1.

! NOGOOD Mark: Marks to the left are always bad.
Useful for parameterizing a grammar with respect to
certain domains.

	 OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2
+Mark1.

! STOPPOINT Mark: slowly increases the search space of
the grammar if no good solution can be found (multipass
grammar).

	 OPTIMALITYORDER Mark4 NOGOOD Mark3
STOPPOINT Mark2 STOPPOINT Mark1.

NOGOOD OT Marks
! If (part of) a lexicon entry or a rule projects an

OT mark that is listed to the left of NOGOOD in
OPTIMALITYORDER, that part of the grammar
is deactivated.

! Can be used for expensive constructions or
particular readings of ambiguous lexical items
which are known to be of no/little importance in
the application domain.

! Grammar Parameterization!

STOPPOINT OT Marks
! Intended for better performance.
! Only beneficial when used cautiously.
! (Parts of) lexical entries and rules marked with

STOPPOINT OT marks are not used for first
parsing attempt.

! If first attempt is unsuccessful, the parser
activates those lexicon or rule parts and
makes a second attempt.

! Example: Mark1 Mark2 STOPPOINT

Generation

! XLE can generate strings from well-formed f-strs.
! GENOPTIMALITYORDER can be different from

OPTIMALITYORDER.
! In the ParGram grammars, the orders and OT-

Marks uses generally differ.
! This is comparable to the situation with

transducers:
– typically, the generation tokenizer is more restrictive

than the parsing tokenizer
– Example: white space or commas (typos): ,,, instead

of ,

Generation

Two ways of generating from an f-structure in XLE.

1.Go to the “Commands” menu of your f-
structure window and select “Generate from
this FS”.

2. At the XLE command line type in:
regenerate {sentence to be parsed}

Demo

grammar4.lfg
testsuite4.lfg

Generation

Pronouns

! So far, we have been using full NPs in all the
examples.

! It would be nice to be able to use pronouns as
well.

! So, will now determine what that should look
like.

! And use the problem to illustrate the basic,
typical steps involved in grammar engineering.

Grammar Engineering – First Steps
! What should the f-structure be?
! What should the c-structure be?
! After having determined this: implement

– the rules with functional annotations
– the lexical entries with POS category and functional

information
– add templates where appropriate

! Remember that you need to think about both:
– c-structure: context free rules to span the words of

the sentence
– f-structure: annotations to produce the correct

functional information

Determining F-Structure
! What pronouns are used in the language?
! English is fairly easy, only a handful and no

morphology.
! Basic personal pronouns

– I, me, we, us, you, she, he, it, her, him, they, them
! What do they encode?

– Number (singular I vs. plural we)
– Gender in some cases
– Case (nominative she vs. accusative her)
– Person (1st person I vs. 2nd person you)

! What else might one need from a grammar
engineering perspective?

Determining F-Structure
! In general, if you are working on a new

construction, it is a good idea to look at
existing work for guidance.

! Good place to look: the English ParGram
grammar (or grammars closely related to the
language you are working on).

! Currently this is most easily available on the
INESS XLE web interface.

English ParGram Grammar Example

Determining C-Structure
! Pronouns substitute for NPs.
! So, what needs to be done is to implement a

disjunction in the NP rule (simplified below).
 NP --> { (D)
 AP*: ! $ (^ ADJUNCT);
 N
 PP*: ! $ (^ ADJUNCT)
 | PRON}.

! Then you need to add pronouns to your lexicon
with the right POS and one or more elegant
templates.
 we PRON * @(PRON we 1 pl pers).

Practical Work

! This concludes Lesson 5.
! The practical work you should do now is

detailed in Exercise 5.
! You will practice with

– pronouns
– constraining PP ambiguity by using OT-marks
– generation

