

Grammar Development with LFG and XLE

Miriam Butt University of Konstanz

Last Time

- LFG and XLE basics
- C-structure and f-structure
- Functional annotation
- Unification/Consistency, Completenes and Coherence
- Templates
- XLE Walkthrough

This Time: Lesson 3

- I. Lexical Rules
 - Passive
 - English Dative Alternation (Dative Shift)
 - Interactions among Lexical Rules
- 2. Different types of functional equations/constraints

Lexical rules (vs. Transformations)

- A feature that LFG is very well known for is the Lexical Rule.
- At the time LFG was invented, generalizations between certain types of sentences were thought of in terms of syntactic *transformations*.
- A famous example involved the passive.
- Linguistic Observation: active clauses are related to passive clauses via a generalizable rule.
 - » Active: The tiger chased the cat.
 - » Passive: The cat was chased by the tiger.

Transformations

For example, within Transformational Grammar the rule for the English passive looked something like this:

NP1 V NP2 \rightarrow NP2 AUX V by NP1

In our example:

NP1 = the tiger NP2 = the cat

V = chased Aux = was

Over time, however, it was realized that this was not the best way to express what happens with passives across languages.

Lexical rules

- Work by David Perlmutter and Paul Postal showed that the relationship between active and passive was best understood in terms of grammatical relations.
- In LFG terms, this was formulated in terms of a Lexical Rule:
 - $\text{OBJ} \rightarrow \text{SUBJ}$
 - SUBJ \rightarrow Adjunct or OBL-AG (OBL agent)
 - Verbs which allow for the passive encode this rule as part of their lexical entry.

Lexical rules

- Not all verbs allow for passivization.
- Passives are generally formed with agentive (di)transitive verbs.
- But not statives, for example.
 - » The dog had a bone.
 - » *A bone was had by the dog.
 - So: LEXICAL property of verbs.
 - And encoded in terms of Lexical Rules.

Lexical rules in XLE

- Lexical rules are a special kind of template.
- They always take a subcategorization frame as their (single) parameter.
- They contain at least two disjuncts, namely on for the canonical subcategorization frame and (an)other(s) for derived subcategorization frame(s).
- Relations between original and derived grammatical functions are stated as follows:

(^ OBJ)-->(^ SUBJ)

Example of a lexical rule

PASSIVE (FRAME) =

- { FRAME
 - $(^{\text{PASSIVE}}) = -$
- FRAME

}

} .

```
(^{\text{PASSIVE}}) = +
```

```
(^ OBJ) --> (^ SUBJ)
```

```
{ (^ SUBJ) --> (^ OBL-AG)
```

```
| (^ SUBJ)--> NULL
```


grammar2.lfg testsuite2.lfg

passives parse-testfile

Testsuites (again)

- Note that testsuite2.lfg builds on testsuite1.lfg
- ALWAYS work with a testsuite.
- ALWAYS test the previous sentences you had already implemented (or excluded from being parsed).
- Make sure you incrementally increase the coverage of your grammar, rather than simply changing which phenomena it can cover.

Argument Alternations

- The Passive is an example of what is more generally known as an Argument Alternation.
- Another famous Argument Alternation is the English Dative Shift.
 - » The girl gave a bone to the dog.
 - » The girl gave the dog a bone.
- The Dative Shift can also be treated via a Lexical Rule.
- Again, not all verbs readily allow Dative Shift.
 - » The girl pulled the bone to the dog.
 - » *The girl pulled the dog a bone.

Argument Alternations

- The Passive and the Dative Shift interact
 - » The girl gave a bone to the dog.
 - » A bone was given to the dog (by the girl).
 - » The girl gave the dog a bone.
 - » The dog was given a bone (by the girl).
- In LFG this can be modeled by an interaction between two Lexical Rules.
- The ditransitive template calls up the Passive and Dative Shift (the order needs to be right).

Dative Shift

- In the Dative Shift
 - the SUBJ stays the same
 - the OBJ and the OBL (PP Argument) undergo the alternation
 - » The girl gave a bone to the dog.SUBJOBJOBL-TO
 - *» The girl gave the dog a bone.*SUBJ OBJ OBJ2
- Lexical Rule: OBJ --> OBJ2 OBL-TO --> OBJ

Dative Shift lexical rule

DAT-SHIFT (FRAME) =

- { FRAME "base case"
 - | FRAME "or dative shift"
 - (^ OBJ)--> (^ OBJ2)
 - (^ OBL-TO)--> (^ OBJ)
 - } .

Unification

- LFG is based on a unification formalism.
- The information specified via the functional annotations is unified into an f-structure representation.
- Thus, different parts of the grammar can specify information about the same feature-value pair.
- However, this information must unify.
- Example: subject-verb agreement.
 - Subject Noun: (^ NUM) = sg
 - Verb: (^ SUBJ NUM) = sg

Various Types of Constraints

- Most of the equations we have seen so far have been *Defining Equations*.
- However, the LFG formalism allows for various other types of equations.
- Several others seen so far as well:
 - existential constraint (as part of the Count Noun Template in Lesson 2)
 - constraining equation (as part of the demo of grammar2.lfg in this lesson)
 - negative constraint (as part of subject verb agreement)

Various Types of Constraints

Defining equations:

Contribute a value for the specified attribute

Notation: (^ ATTRIBUTE) = value

Constraining equations:

Check whether the specified attribute has the specified value, but do **not** contribute/introduce that value

Notation: (^ ATTRIBUTE) =c value

Example: Check in the Passive Lexical Rule that the form of the verb is indeed a past participle.

Various Kinds of Constraints (cont'd)

- Negated constraints:
 - Enforce that the specified attribute does **not** have the specified value.

Notation: (^ ATTRIBUTE) ~= value

Example: Base-form entry of English verb may state that (^ SUBJ PERS) ~= 3 if (^ SUBJ NUM) = sg.

Existential constraints:

Enforce that the specified attribute has some value, without specifying which value.

Notation: (^ ATTRIBUTE)

Example: Singular entry of English count noun may state that (^ DEF).

Example of a constraining equation

Passive Lexical Rule

```
PASS(FRAME) = { FRAME "base case"
                 FRAME "passive"
                 (^{\text{PASSIVE}}) = +
                 (^ PARTICIPLE) =c past
      "make sure to have a past participle"
                 (^{OBJ}) - - > (^{SUBJ})
                 { (^{\circ} SUBJ) --> (^{\circ} OBL-AG)
               | (^ SUBJ) --> NULL }
```

Example of a negated constraint

The gorillas devour the bananas.

devour V * PRED='devour<(^SUBJ)(^OBJ)>'
(^TENSE) = pres
(^MOOD) = indicative
{ (^SUBJ NUM) = pl
| (^SUBJ NUM) = sg
 (^SUBJ PERS) ~= 3
}.

Example of an existential constraint

The gorilla ate *(the) banana.

```
banana V * PRED=`banana'
(^ NUM) = sg
(^ DEF).
```

Practical Work

- This concludes Lesson 3.
- The practical work you should do now is detailed in Exercise 3.
- You will practice with
 - templates
 - lexical rules
 - feature unification and different types of constraints
 - testsuites