
FST Morphology

Miriam Butt

October 2002

Based on Beesley and Karttunen 2002

Recap

Last Time: Finite State Automata can model most

anything that involes a finite amount of states.

We modeled a Coke Machine and saw that it could

also be thought of as defining a language.

We will now look at the extension to natural language

more closely.

A One-Word Language

c a n t o

A Three-Word Language

c a n t o

t
i g r

e

m
e s a

Analysis: A Successful Match

c a n t o

t
i g r

e

m
e s a

m e s aInput:

Rejects

The analysis of libro, tigra, cant, mesas will fail.

Why?

Transducers: Beyond Accept and

Reject

c a n t o

t
i g r

e

m
e s a

t
i g r

e

c a n t o
m

e s a

Transducers: Beyond Accept and

Reject

Analysis Process:

• Start at the Start State

• Match the input symbols of string against the lower-

side symbol on the arcs, consuming the input symbols

and finding a path to a final state.

• If successful, return the string of upper-side symbols

on the path as the result.

• If unsucessful, return nothing.

A Two-Level Transducer

c a n t o

t
i g r

e

m
e s a

t
i g r

e

c a n t o
m

e s a

m e s aOutput:
m e s aInput:

A Lexical Transducer

c a n t a

Output:

c a n tInput:

r
+PresInd

+1P
+Sg

c a n t 0 0 0 0 0o

o

c a n t

+Verb

a r +PresInd +1P +Sg+Verb

One Possible Path through the Network

A Lexical Transducer

c a n t o

Output:

c a n tInput:

+Masc +Sg

c a n t o 0 00

o

c a n t

+Noun

o +Masc +Sg+Noun

Another Possible Path through the Network

The Tags

Tags or Symbols like +Noun or +Verb are

arbitrary: the naming convention is

determined by the (computational) linguist

and depends on the larger picture (type of

theory/type of application).

One very successful tagging/naming

convention is the Penn Treebank Tag Set

The Tags

What kind of Tags might be useful?

Generation vs. Analysis

The same finite state transducers we have been

using for the analysis of a given surface string

can also be used in reverse: for generation.

The XRCE people think of analysis as lookup, of

generation of lookdown.

Generation --- Lookdown

c a n t a

Output:

c a n tInput:

r
+PresInd

+1P
+Sg

c a n t 0 0 0 0 0o

oc a n t

+Verb

a r +PresInd +1P +Sg+Verb

Generation --- Lookdown

Analysis Process:

• Start at the Start State and the beginning of the input string

• Match the input symbols of string against the upper-

side symbols on the arcs, consuming the input symbols

and finding a path to a final state.

• If successful, return the string of lower-side symbols

on the path as the result.

• If generation is unsucessful, return nothing.

Concatenation

One can also concatenate two existing languages

(finite state networks with one another to build

up new words productively/dynamically.

This works nicely, but one has to write extra

rules to avoid things like: *trys, *tryed, though

trying is okay.

Concatenation

w o r k

i n g

s

e d

Network for the Language {“work”}

Network for the Language {“s”, “ed”, “ing”}

Concatenation

w o r k i n g

s

e d
Concatenation of the two networks

What strings/language does this result in?

Composition

Composition is an operation on two relations.

Composition of the two relations <x,y> and

<y,z> yields <x, z>

Example: <“cat”, “chat”> with <“chat”,

“Katze”> gives <“cat”, “Katze”>

Composition

K a t z e

c h a t

c a t

c h a t

Composition

K a t z e

c a t

c h a t

Merging the two networks

Composition

K a t z e

c a t

The Composition of the Networks

What is this reminiscent of?

Other Uses for the Transducers

C A T

c a t

Upper/Lower Casing

