FST Morphology

Based on Beesley and Karttunen 2002

Miriam Butt
October 2002

A One-Word Language

Recap

Last Time: Finite State Automata can model most
anything that involes a finite amount of states.

We modeled a Coke Machine and saw that it could
also be thought of as defining a language.

We will now look at the extension to natural language
more closely.

A Three-Word Language

Analysis: A Successful Match Rejects

The analysis of libro, tigra, cant, mesas will fail.

Why?

Transducers: Beyond Accept and
Reject Reject
Analysis Process:

« Start at the Start State

» Match the input symbols of string against the lower-

side symbol on the arcs, consuming the input symbols
and finding a path to a final state.

e If successful, return the string of upper-side symbols
on the path as the result.

o If unsucessful, return nothing.

A Two-Level Transducer

Input: “~m>-e s a--
Output: m e s a

A Lexical Transducer

C a n t (0] +Noun +Masc +Sg

Cesa< n«t<« o0o+«-.(0 0 0
N N

N N
Input: ~-c¢ ~-a-n“-t o~
Output:
Another Possible Path through the Network

canto +Noun +Masc +Sg

A Lexical Transducer

+Verh tPresind

O*O*O*O*O*@O*O*O*O*O

c<\a<\n<~t<~ 0 0

A\ A A \ I
\ \ \ /
N N \ /

N N
Input: ~-c¢ ~-a>-n>-t o-~
Output:
One Possible Path through the Network

cant ar +Verb +Presind +1P +Sg

The Tags

Tags or Symbols like +Noun or +Verb are
arbitrary: the naming convention is
determined by the (computational) linguist
and depends on the larger picture (type of
theory/type of application).

One very successful tagging/naming
convention is the Penn Treebank Tag Set

The Tags

What kind of Tags might be useful?

Generation --- Lookdown
[ZRN XU AU ¢ oY, d :\;resfn‘d \)‘“\c—Sg
c a n 1 t 1 a +Verb +1];

a ni t 0

/ ,”
Co 4 / !
. / ! I
! i !
o
YN i i |
Input.~ cva'n't a r +Verb +Presind +IP +Sg

\
1
7000 9 I,'0

Output: cant o

Generation vs. Analysis

The same finite state transducers we have been
using for the analysis of a given surface string
can also be used in reverse: for generation.

The XRCE people think of analysis as lookup, of
generation of lookdown.

Generation --- Lookdown

Analysis Process:

« Start at the Start State and the beginning of the input string

« Match the input symbols of string against the upper-
side symbols on the arcs, consuming the input symbols
and finding a path to a final state.

e If successful, return the string of lower-side symbols
on the path as the result.

« If generation is unsucessful, return nothing.

Concatenation

One can also concatenate two existing languages
(finite state networks with one another to build
up new words productively/dynamically.

This works nicely, but one has to write extra
rules to avoid things like: *trys, *tryed, though
trying is okay.

Concatenation

What strings/language does this result in?

Concatenation

Network for the Language {“work™}

Network for the Language {*s”, “ed”, “ing”}

Composition
Composition is an operation on two relations.

Composition of the two relations <x,y> and
<y,z>yields <x, z>

Example: <“cat”, “chat”> with <*chat”,
“Katze”> gives <“cat”, “Katze”>

Composition

Composition

The Composition of the Networks

What is this reminiscent of?

Composition

:C:ah:t:t O

Merging the two networks

Other Uses for the Transducers

0=0:0+0O
C~ AT

Upper/Lower Casing

