
FST Morphology

Miriam Butt

October 2003

Based on Beesley and Karttunen 2003

Recap

Last Time: Finite State Automata can model most

anything that involes a finite amount of states.

We modeled a Coke Machine and saw that it could

also be thought of as defining a language.

We will now look at the extension to natural language

more closely.

A One-Word Language

c a n t o

A Three-Word Language

c a n t o

t
i g r

e

m
e s a

Analysis: A Successful Match

c a n t o

t
i g r

e

m
e s a

m e s aInput:

Rejects

The analysis of libro, tigra, cant, mesas will fail.

Why?

Use: for example for a spell checker

Transducers: Beyond Accept and

Reject

c a n t o

t
i g r

e

m
e s a

t
i g r

e

c a n t o
m

e s a

Transducers: Beyond Accept and

Reject

Analysis Process:

• Start at the Start State

• Match the input symbols of string against the lower-

side symbol on the arcs, consuming the input symbols

and finding a path to a final state.

• If successful, return the string of upper-side symbols

on the path as the result.

• If unsucessful, return nothing.

A Two-Level Transducer

c a n t o

t
i g r

e

m
e s a

t
i g r

e

c a n t o
m

e s a

m e s aOutput:
m e s aInput:

A Lexical Transducer

c a n t a

Output:

c a n tInput:

r
+PresInd

+1P
+Sg

c a n t 0 0 0 0 0o

o

c a n t

+Verb

a r +PresInd +1P +Sg+Verb

One Possible Path through the Network

A Lexical Transducer

c a n t o

Output:

c a n tInput:

+Masc +Sg

c a n t o 0 00

o

c a n t

+Noun

o +Masc +Sg+Noun

Another Possible Path through the Network

(found through backtracking)

Why Transducer?

General Definition: Device that converts energy from one

form to another.

In this Context: Device that converts one string of symbols

into another another string of symbols.

The Tags

Tags or Symbols like +Noun or +Verb are

arbitrary: the naming convention is

determined by the (computational) linguist

and depends on the larger picture (type of

theory/type of application).

One very successful tagging/naming

convention is the Penn Treebank Tag Set

The Tags

What kind of Tags might be useful?

Generation vs. Analysis

The same finite state transducers we have been

using for the analysis of a given surface string

can also be used in reverse: for generation.

The XRCE people think of analysis as lookup, of

generation of lookdown.

Generation --- Lookdown

c a n t a

Output:

c a n tInput:

r
+PresInd

+1P
+Sg

c a n t 0 0 0 0 0o

oc a n t

+Verb

a r +PresInd +1P +Sg+Verb

Generation --- Lookdown

Analysis Process:

• Start at the Start State and the beginning of the input string

• Match the input symbols of string against the upper-

side symbols on the arcs, consuming the input symbols

and finding a path to a final state.

• If successful, return the string of lower-side symbols

on the path as the result.

• If generation is unsuccessful, return nothing.

Tokenization

General String Conversion: Tokenizer

Task: Divide up running text into individual tokens

• couldn’t -> could not

• to and from -> to-and-fro

• ,,, -> ,

• The farmer walked -> The^TBfarmer^TBwalked

Sharing Structure and Sets

Networks can be compressed quite cleverly

(p. 16-17).

FST Networks are based on formal language theory.

This includes basics of set theory:

membership, union, intersection,

subtraction, complementation

Sets:

Some Basic

Concepts/Representations

Empty Language

Empty-String Language

Some Basic

Concepts/Representations

A Network for the Universal Language

A Network for an Infinite Language

a

?

Relations

Ordered Set: members are ordered.

Ordered Pair: <A,B> vs. <B,A>

Relation: set whose members are ordered pairs

• Family Trees (p. 21)

• { <“cantar+Verb+PresInd+1P+Sg”, “canto”>,

 <“canto+Noun+Masc+Sg”, “canto”>,

... }

Relations

An Infinite Relation:.

Identity Relation: <“canto”, “canto”>

a
A

b
B

c
C
...

z
Z

Basic Set Operations

• union (p. 24)

• intersection (p. 25)

• subtraction (p. 25)

Concatenation

One can also concatenate two existing languages

(finite state networks with one another to build

up new words productively/dynamically).

This works nicely, but one has to write extra

rules to avoid things like: *trys, *tryed, though

trying is okay.

Concatenation

w o r k

i n g

s

e d

Network for the Language {“work”}

Network for the Language {“s”, “ed”, “ing”}

Concatenation

w o r k i n g

s

e d
Concatenation of the two networks

What strings/language does this result in?

Composition

Composition is an operation on two relations.

Composition of the two relations <x,y> and

<y,z> yields <x, z>

Example: <“cat”, “chat”> with <“chat”,

“Katze”> gives <“cat”, “Katze”>

Composition

K a t z e

c h a t

c a t

c h a t

Composition

K a t z e

c a t

c h a t

Merging the two networks

Composition

K a t z e

c a t

The Composition of the Networks

What is this reminiscent of?

Composition + Rule Application

Composition can be used to encode phonology-style rules.

E.g., Lexical Phonology assumes several iterations/levels

at which different kinds of rules apply.

This can be modeled in terms of cascades of FST

transducers (p. 35).

These can then be composed together into one single

transducer.

Next Time

• Begin working with xfst

• Now: Exercises 1.10.1, 1.10.2, 1.10.4

Optional: 1.10.3

