
Finite State Morphology Tutorial

Miriam Butt and Tina Bögel

Konstanz

CLT 09, Lahore

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 1 / 42

Content

Content

The tutorial will be split into two parts:

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 2 / 42

some facts — the book & the software

Finite State Morphology - The Book

Lauri Karttunen and Kenneth R. Beesley (2003)

Xerox finite-state tools and techniques for morphological analysis and
generation

lexc → high-level language for specifying lexicons
xfst → a) interface providing regular-expression compiler

b) access to the Xerox Finite State Calculus
runtime applications tokenize and lookup

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 3 / 42

some facts — the book & the software

A Short Look at the Xfst Interface

xfst[3]:

The xfst Interface is a command line

1 open and process files

2 enter commands/Regular Expressions directly

The Stack is shown within the square brackets

→ it is a last in, first out data structure (LIFO)

→ serves to store the different networks

→ Stack operations will be introduced later

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 4 / 42

some facts — the book & the software

The Goal of the Book is to teach ...

... linguists how to use FSM tools and techniques.

... the formal properties of finite state networks.

... to build useful and efficient programs that process text in natural
languages.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 5 / 42

some facts — the book & the software

Applications of the software

1 Tokenization divides a running input text into tokens

2 Several finite state morphological transducers have been developed
German, English, French, Spanish, Portuguese, Dutch, Italian, Arabic.

3 Finite State Lexical Transducers are mathematically well understood
and therefore highly efficient.

4 Example: Xerox Spanish Morphology (1996 version) 46 0000 base
forms
3 400 000 inflected word forms (generated/analyzed)
3349 kbytes of memory
can be further compressed for commercial applications.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 6 / 42

Content

Content

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 7 / 42

some basic knowledge — finite state morphology

Morphological Application

We will concentrate on morphological application and the two central
problems:

1 WORD FORMATION (= Morphotactics/Morphosyntax): Words are
composed of smaller units of meaning called Morphemes.

constrained to appear in certain combinations
piti-less-ness vs. *piti-ness-less

2 PHONOLOGICAL/ORTHOGRAPHYCAL ALTERNATIONS: spelling/sound of
a morpheme often depends on its environment.

pity is realized as piti in the context of a following less
Therefore it is piti-less instead of *pity-less

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 8 / 42

some basic knowledge — finite state morphology

Finite State Networks — Acceptor

Consider the following network for the words car, cat, cars and cats:

There are states (the round ones) and paths (the arrows).

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 9 / 42

some basic knowledge — finite state morphology

Finite State Networks — optimized Acceptor

However, the paths and states can be shared...

... and space and running time can be saved, which makes the
networks efficient and fast .

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 10 / 42

some basic knowledge — finite state morphology

Finite State Networks — Acceptor

This type network is called an Acceptor.

There is always an upper (analysis) and a lower (generation) side to
the network

Within Acceptors the strings on both sides of the paths are the same
(Identity relation a:a)

This can be useful for spell-checking and the like.

In xfst-terms, this means:

xfst[1]: up car

car

xfst[1]: down car

car

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 11 / 42

some basic knowledge — finite state morphology

Finite State Networks — Transducer

In order to work with morphological analysis/generation, Transducers
are very useful:

Transducers are two-sided, which makes morphological analysis
possible.

In xfst-terms, this means:

xfst[1]: up cars

car+pl

xfst[1]: down car+pl

cars

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 12 / 42

Content

Content

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 13 / 42

building networks with xfst

Basic Ingredients

For an already very powerful finite state automata, one needs

1 Lexicon:

→ which contains the stems,
→ the inflectional or derivational morphemes
→ and the appropriate morphological analysis

2 Regular expressions:

→ which manipulate the forms of the lexicon on the basis of phonological
rules

3 Executable Script — short: Script:

→ which saves you a lot of typing

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 14 / 42

building networks with xfst

The Lexicon

Basic idea: The Lexicon contains different states for each morpheme.

It starts with the declaration of the morphological symbols, the tags:

Multichar Symbols

+Pl +Sg

followed by the different Lexicons, starting out with Lexicon Root,
the start state:

LEXICON Root

cat SgPl;

car SgPl;

Here, the stems are included.
The next Lexicon is indicated by the made-up SgPl at the end
followed by a semicolon.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 15 / 42

building networks with xfst

The Lexicon

The Automata now jumps to the next state/lexicon called SgPl.

LEXICON SgPl

+Pl:s #;

+Sg:0 #;

→ The left side of the colon represents the upper (the analysis) side of
the transducer.

→ The right side shows the lower side (the generation/suface form).

The surface morpheme on the right side is connected to the analysis
on the left side.

In this case, +Pl is connected to [-s]. +Sg however, is represented by
a Null-morpheme.

→ The hash symbol at the end of the row indicates the end of the path -
this Lexicon is therefore the final state.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 16 / 42

building networks with xfst

The Lexicon - an Overview

Multichar Symbols

+Pl +Sg +N +A

LEXICON Root

milk Noun;

car Noun;

pity Noun;

LEXICON Noun

+N:0 SgPl;

Adj;

LEXICON SgPl

+Pl:s #;

+Sg:0 #;

LEXICON Adj

+Adj:less #;

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 17 / 42

building networks with xfst

The Script — Calling up the Lexicon

The Script (script.xfst) is a source code
— avoids too much typing at the interface:

Our first entry will be

clear

which ensures that there are no “leftovers” on the stack

In oder to open up the Lexicon, we add:

read lexc < testlex.txt

Back to the Lexicon...

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 18 / 42

building networks with xfst

The Lexicon — Overgeneration

However, the current Lexicon allows a lot of overgeneration.

There are four words that should not exist:

1 *milkless → The noun milk cannot become an adjective by means of
the suffix -less

2 *milks and *pitys → Both nouns are uncountable (no Plurals)
3 *pityless → phonological rule is needed for correct spelling: pitiless.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 19 / 42

building networks with xfst

The Lexicon — Flags

1. and 2. can be solved by manipulating the Lexicon itself.

There are two possibilities:

1 More paths/lexicons can be added

2 So-called Flag Diacritics can be integrated

These flags can be imagined as invisible markers that are added to
strings. Other flags are stop signs, which will allow only certain
strings and their flags to pass through.

Note: Flags allow Finite-State Machines to operate with a memory
— not a usual property (individual states usually do not remember
the previous history of the network).

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 20 / 42

building networks with xfst

The Lexicon — Types of Flags

Generally, flags are split into three parts:

@Name.Feature.Value@

Name: Flag-names usually consist of only one letter, three of the
possibilities are listed below

P → Positive: marks the flag as carrying that specific feature-value pair
R → Requires that feature-value pair on a string to open up this path
D → Disallows that specific feature-value pair on a string to pass

Feature: The features can be invented individually. They often
describe a certain grammatical category like case or number.

Value: Values are the specific shapes of the grammatical categories,
e.g. Sg, Pl, Dat or Acc.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 21 / 42

building networks with xfst

The Lexicon with Flag Diacritics

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 22 / 42

building networks with xfst

The Lexicon — Flag Elimination

However, whenever you include flags into your Lexicon, you need to
eliminate these after your compilation . . .

→ difficult manipulation via Regular Expressions
→ unreadable output:

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 23 / 42

building networks with xfst

The Script — Eliminating flags

We already have two commands in our script.xfst:

clear
read lexc < testlex.txt

To eliminate the flags simply list the different features:

eliminate flag LIQUID

eliminate flag COUNT

This will cover all of our four flags

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 24 / 42

building networks with xfst

The Lexicon — Output with Flags

With flags, the output of our current Lexicon will look like the following:

*milks, *pitys and *milkless have disappeared...

... but what about *pityless ???

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 25 / 42

Content

Content

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 26 / 42

building networks with xfst

Regular Expressions

*pityless needs to be dealt with by Regular Expressions.

Languages that can be described in finite state are those, which can
be described by Regular Expressions.

describes a string a (for a simple acceptor) or

a relation a:a (for a transducer) and

can be compiled into a finite network

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 27 / 42

building networks with xfst

Regular Expressions

Some basic Regular Expressions — mainly following classical
computer science:

0 = Epsilon ? = Any Symbol .#. = Boundary Symbol

() = Optionality + = Concatenation with * = Concatenation with

itself one or more times itself zero or more times

˜ = Negation = place holder {} and = concatenation

[] = Grouping → = Becomes... || = In the context of...

| = Union & = Intersection .x. and : = Crossproduct

.o. = Composition

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 28 / 42

building networks with xfst

Regular Expressions — An Example

With an abstract example like:

[{ab} c .x. {de} f* g]

what would I get as output?

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 29 / 42

building networks with xfst

Regular Expressions — *pityless

Regular Expressions are mostly used to manipulate the Lexicon
phonologically.
In the case of *pityless, the phonological rule would be:

[y − > i || l e s s]

which translates as

‘y’ becomes ‘i’ iff ‘less’ follows ‘y’

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 30 / 42

building networks with xfst

Regular Expressions — The File

The phonological rules (and other Regular Expressions) are kept in a
separate file: testrules.txt. Here, they are compiled together by means
of composition:

Regular Expression 1
.o.
Regular Expression 2
.o.
Regular Expression 3;

Be aware of the fact that the second rule will take as the input the
output of the first rule etc. (feeding and bleeding).

The correct succession of phonological rules is therefore of great
importance.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 31 / 42

building networks with xfst

The Script — Introducing the Regular Expressions

We already have four commands in our script.xfst:

clear
read lexc < testlex.txt
eliminate flag LIQUID
eliminate flag COUNT

In order to introduce the Regular Expressions we need to add
another entry:

read regex < testrules.txt

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 32 / 42

Content

Content

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 33 / 42

building networks with xfst

The Interface

The xfst-Interface is used to interact with the different files but also to
accomplish smaller tasks directly.

The stack takes the networks as they come: the last one is on top.

xfst[3]:

There are certain stack operations that help to manipulate the
network:

1 pop stack → will take away the top network
2 turn stack → will turn the stack around
3 apply up/down word → analyse/generate a certain string
4 compose/concatenate/union net → see Regular Expressions

In order to combine our rules and our lexicon, we need the
composition-operator

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 34 / 42

building networks with xfst

The Interface — Composing our Networks

Some thoughts about Order of Composition

Our testrules.txt need an input they can work with

Therefore they need to be at the second position of the composing
process

Lexicon → *pityless → Rules → pitiless

For the Lexicon to be dealt with first by the composition operator,
it must be on top of the stack

We therefore need to adjust our Script

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 35 / 42

building networks with xfst

The Script — Last Adjustments

First, we add

turn stack to our Script.

We compose the two networks and add

compose net which gives us a final Script:

clear
read lexc < testlex.txt
eliminate flag LIQUID
eliminate flag COUNT
read regex < testrules.txt
turn stack
compose net

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 36 / 42

building networks with xfst

The Interface — Final Output

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 37 / 42

Content

Content

Theory of Finite State Morphology

some facts — the book & the software
some basic knowledge — finite state morphology
building networks with xfst

→ The Lexicon
→ Regular Expressions
→ The Interface

possible applications

Practical application of Finite State Morphology

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 38 / 42

possible applications

Possibilities of Finite-State-Morphology

Just to give you an overview of power of Finite State Morphology:

Prefixes, suffixes and stem alternations

Restricted reduplication (e.g. Tagalog: kukuha — “take”)

Full stem reduplication (e.g. in Malay: buku — “book”;
buku-buku — “books”)

Semitic stem interdigitation (e.g. Arabic)

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 39 / 42

possible applications

FSM and the Morphology-Syntax Interface

The Finite-State Morphologies written with XFST can be integrated
into XLE grammars very easily.

The following things need to be done.

(Read the XLE documentation on this subject).
Make a Lexikon which tells the LFG grammar how all of the abstract
tags coming out of the morphology should be interpreted.
For example:
+Sg NUM xle (↑NUM) = sg.
+Pl NUM xle (↑NUM) = pl.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 40 / 42

possible applications

You also need to Write Sublexical Rules which will parse the lemma
and the tags coming out of the morphology.

For example:

N --> NOUN-S_BASE: ^ = !
N-T_BASE: @(COMMON count) @(NSYN common)
NUM_BASE: ^ = !

Tell XLE to integrate these files in the Configuration Section and you
are done! (see Kaplan et al. 2004 for more details).

However, note that getting the sublexical rules just right (when they
become more complex) turns out to be a tricky business, so you will
need to be very careful and precise.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 41 / 42

possible applications

References I

Beesley, Kenneth, and Lauri Karttunen. 2003. Finite State Morphology.
Stanford, CA: CSLI Publications.

Butt, Miriam, Tracy H. King, Maŕıa-Eugenia Niño, and Frédérique Segond.
1999. A Grammar Writer’s Cookbook. CSLI Publications.

Kaplan, Ronald M., John T. Maxwell III, Tracy H. King, and Richard
Crouch. 2004. Integrating Finite-state Technology with Deep LFG
Grammars. In Proceedings ESSLLI, Workshop on Combining Shallow and
Deep Processing for NLP.

Miriam Butt and Tina Bögel (Konstanz) FSM CLT 09, Lahore 42 / 42

	Content
	some facts --- the book & the software
	Content
	some basic knowledge --- finite state morphology
	Content
	building networks with xfst
	Content
	building networks with xfst
	Content
	building networks with xfst
	Content
	possible applications
	References

