Some Logical Equivalences & Entailments

(Partee et al. 1990)

1. Laws of Propositional Logic

7. DeMorgan's Laws:

For any formulas ϕ , ψ , π :

1. Idempotent Laws:	(φ v φ) (φ ∧ φ)	⇔	ф ф
2. Commutative Laws:	(φ v ψ) (φ v ψ)	⇔	$\begin{array}{c} (\psi \lor \varphi) \\ (\psi \land \varphi) \end{array}$
3. Associate Laws:	```		$\begin{array}{c} (\varphi \vee (\psi \vee \pi)) \\ (\varphi \wedge (\psi \wedge \pi)) \end{array}$
4. Distributive Laws:			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5. Identity Laws:			ф Т ф
6. Complement Laws:	(φ ∨ ¬φ) (φ ∧ ¬φ) ¬¬φ	⇔ ⇔ ⇔	Τ

 $\neg(\phi \lor \psi) \Leftrightarrow (\neg \phi \land \neg \psi)$

9. Biconditional Laws:
$$(\phi \leftrightarrow \psi) \qquad \Leftrightarrow \qquad (\phi \rightarrow \psi) \quad \wedge \ (\psi \rightarrow \phi) \\ (\phi \leftrightarrow \psi) \qquad \Leftrightarrow \qquad (\neg \phi \land \neg \psi) \lor \ (\phi \land \psi)$$

2. (Some) Laws in Predicate Logic

For any predicate π and formula ϕ :

1. Law of Quantifier Negation:

$$\neg \forall x (\pi(x)) \Leftrightarrow \exists x (\neg \pi(x))
[And, by \neg \neg \phi \Leftrightarrow \phi, also:
\forall x (\pi(x)) \Leftrightarrow \neg \exists x (\neg \pi(x))
\neg \forall x (\neg \pi(x)) \Leftrightarrow \exists x (\pi(x))
\forall x (\neg \pi(x)) \Leftrightarrow \neg \exists x (\pi(x))]$$

2. Laws of Quantifier (In)Dependence:

```
a. \forall x \forall y (\pi(x,y)) \Leftrightarrow \forall y \forall x (\pi(x,y))
b. \exists x \exists y (\pi(x,y)) \Leftrightarrow \exists y \exists x (\pi(x,y))
c. \exists x \forall y (\pi(x,y)) \Rightarrow \forall y \exists x (\pi(x,y))
```

3. Laws of Quantifier Distribution:

```
a. \forall x \ (\pi(x) \land \rho(x))\Leftrightarrow\forall x \ (\pi(x)) \land \forall x \ (\rho(x))b. \exists x \ (\pi(x) \lor \rho(x))\Leftrightarrow\exists x \ (\pi(x)) \lor \exists x \ (\rho(x))c. \forall x \ (\pi(x)) \lor \forall x \ (\rho(x))\Rightarrow\forall x \ (\pi(x) \lor \rho(x))d. \exists x \ (\pi(x) \land \rho(x))\Rightarrow\exists x \ (\pi(x)) \land \exists x \ (\rho(x))
```

4. Laws of Quantifier Movement:

a.
$$\phi \to \forall x(\pi(x))$$
 \Leftrightarrow $\forall x \ (\phi \to \pi(x))$ provided that x is not free in ϕ .
b. $\phi \to \exists x(\pi(x))$ \Leftrightarrow $\exists x \ (\phi \to \pi(x))$ provided that x is not free in ϕ and that someone exists.
c. $\forall x(\pi(x)) \to \phi$ \Leftrightarrow $\exists x \ (\pi(x) \to \phi)$ provided that x is not free in ϕ and that someone exists.

d. $\exists x(\pi(x)) \rightarrow \phi \Leftrightarrow \forall x \ (\pi(x) \rightarrow \phi)$ provided that x is not free in ϕ .