
Implementing Argument
Alternations II

Miriam Butt (Konstanz)
and

Tracy Holloway King (PARC)
Miriam Butt (Konstanz)

and
Tracy Holloway King (PARC)

Miriam Butt (Konstanz)
and

Tracy Holloway King (PARC)
Miriam Butt (Konstanz)

and
Tracy Holloway King (PARC)

ESSLLI 2006, August, Malaga

Lexical Rules

Passive via Lexical Rule:

PASS(SCHEMATA)= {SCHEMATA
 |SCHEMATA

 (^ PARTICIPLE)=c PAST
 (^ OBJ)-->(^ SUBJ)

 { (^ SUBJ)-->(^ OBL-AG)
 |(^ SUBJ)-->NULL}}.

Lexical Rules
“Dative Shift” in English:

Kim gave a bone to the dog. Kim gave the dog a bone.

SUBJ OBJ OBL SUBJ OBJ OBJ-TH

This is also a clear candidate for a Lexical Rule:

DAT-SHIFT(SCHEMATA) = { SCHEMATA
! ! ! ! ! ! ! (^ OBL PCASE) =c TO
! ! ! ! ! ! ! |SCHEMATA
! ! ! ! ! ! ! (^ OBJ) --> (^ OBJ-TH)
! !! ! ! ! ! ! (^ OBL) --> (^ OBJ)}.

Dative Shift

Conventional Linguistic Wisdom:

I lowered the box to John.

? I lowered John the box.

Not all ditransitive verbs allow for Dative Shift

Ann yelled the news to Beth.

? Ann yelled Beth the news.

But Bresnan and Nikitina (2003) show via
corpus work that this is a fallacy of arm-chair
linguistics.

Dative Shift

I think he was poking fun at the charges that Blackmore

has been making that he chronically forgets words — he

went over to Jon Lord during ‘Smoke’ and seemed to be

getting Jon to yell him the words!!

www.thehighwaystar.com/reviews/namerica/asbuandr.htm

Therefore, when he got to purgatory, Buddha lowered

him the silver thread of a spider as his last chance for

salvation. www.inch.com/ fujimura/ImofGrmain.htm

Bresnan and Nikitina (2003):

Dative Shift

So ditransitives generally can undergo an argument
alternation.

Question: why does this alternation exist?

a) Processing Reasons (see Wasow 2002)
! • Put heavy NPs at the very end (heavy NP-shift)
! • Put pronouns near the verb (most of the
! examples !deemed to be bad by linguists are good
! if you substitute a pronoun).

Dative Shift

Question: why does this alternation exist?

b) Semantic Reasons
! • OBJ supposed to be the more “affected” thing.

(1) John taught Pashto to the CIA agents.

(2) John taught the CIA agents Pashto.

Entailment: They learned Pashto in (2),
but not in (1).

Load/Spray

Same with the famous Load/Spray Alternation
(see Levin and Rappaport Hovav 2005).

(1) John loaded hay onto the wagon.

(2) John loaded the wagon with hay.

Entailment: wagon is full in (2), but
not in (1).

Implementation

The Dative-Shift Lexical Rule is easy to implement.

For the Processing Preferences, we could use XLE’s
inbuilt OT constraints (inspired by Optimality
Theory).

For the Semantics, we could think about adding a
feature (if this is useful). We cannot do much more
because LFG is a theory of syntax, not of semantics —
but we would like to anticipate the semanticists’
needs.

XLE
How to implement this?

Dative-Shift and Passive

Passives and Datives Interact

XLE

(1) The bone was given to the dog (by John).

(2) The dog was given the bone (by John).

DITRANS(P) = @(PASS @(DAT-SHIFT (^ PRED) =
! ! ! ! ! ! 'P<(^ SUBJ) (^ OBJ) (^ OBL)>'))

Templates/Lexical Rules

We have now stacked the passive template on top of
the dative shift one.

• !Lexical Rules can interact with one !another
! unproblematically (but feeding/bleeding!).

• !We are beginning to create something of a
! Template Hierarchy. What is the status of this?

The lexicon à la Flickinger

A hierarchical structure of classes
! Each class represents some piece of syntactic

information
bakes belongs to:

– the third-person singular present-tense class
 (like appears)

– the transitive/intransitive class
 (like cooked)

– and others

! Classes may be subclasses of other classes
! Classes may partition other classes along several

dimensions

The HPSG lexicon: a type hierarchy

! More specific types inherit information from less specific

! Types and subtypes:

– A mathematical relation between structures: AND/OR lattice

– Different subtypes represent alternatives/disjunction

– Multiple supertypes represent conjunction

… but type inheritance is not the only (best?)
 way to express generalizations

!"LFG does not use typed feature structures for lexical
generalizations

head

noun relational

c-noun gerund verb

AND

OR
(Malouf)

LFG: Relations between descriptions

! LFG functional description is a collection of equations

! These can be named

! This name can stand for those equations in linguistic
descriptions

! Named descriptions are referred to as templates

! Interpretation: Simple substitution
 Template-description is substituted for template-name
 that appears in (is invoked by) another description

LFG can encode linguistic generalizations as
relations between descriptions of structures

3SG and PRESENT templates

3SG = (^ SUBJ PERSON) = 3

 (^ SUBJ NUM) = SG.

 “3SG names (^ SUBJ PERSON)=3 (^ SUBJ NUM)=SG”

PRESENT = (^ TENSE) = PRES.

@ marks invocation

 Substitute (^ TENSE)=PRES for @PRESENT

 in other descriptions

Templates enable hierarchical
generalizations

! Template definitions can refer to other templates by name
– E.g. further divide 3SG into:

 3PERS = (^ SUBJ PERSON) = 3.

 SING = (^ SUBJ NUM) = SG.

 then 3SG = @3PERS @SING.

! Hierarchy of references represents inclusion hierarchy of
named descriptions

! Frequently repeated subdescriptions
– specified in one place

– effective in many

Hierarchy of template invocations
Sharing in verb agreement

PRES3SG

PRESENT3SG

SING 3PERS

PRESNOT3SG

PRESNOT3SG = ~@3SG @PRESENT.

 ⇒ ~[@SING @3PERS] ⇒ ~[(^ SUBJ NUM)=SG

 (^ SUBJ PERS=3]

• Boolean combinations of template references
 (just like ordinary descriptions)

• Sharing is distinct from mode of combination

Templates with parameters: Valency

! TRANS-OR-INTRANS(_P) =
 { (^ PRED) = ‘_P<SUBJ, OBJ>’

 | (^ PRED) = ‘_P<SUBJ>’ }.

! PRED value as a parameter of the template

 @TRANS-OR-INTRANS(bake)

 ⇒ { (^ PRED) = ‘bake<SUBJ, OBJ>’

 | (^ PRED) = ‘bake<SUBJ>’ }

! Arguments can substitute for any part of an f-description
– Attributes

– Values

– Semantic relation-names

– Descriptions

Pargram convention:
 Parameters begin with _

Valency hierarchy

! TRANS-OR-INTRANS(P) =
{ @INTRANSITIVE(P) | @TRANSITIVE(P) }.

! INTRANSITIVE(P) = (^ PRED)=‘P<SUBJ>

TRANS-OR-INTRANS

INTRANSITIVE TRANSITIVE

Templates and generalizations: bakes

! bakes: @TRANS-OR-INTRANS(bake)
 @PRES3SG

! TRANS-OR-INTRANS(p): shared by eat, cooked,…

! PRES3SG: shared by appears, goes, cooks,…

! PRESENT:

– used by PRES3SG template

– shared by bake, laugh, etc.

Lexical sharing

TRANS-OR-INTRANS

INTRANSITIVE TRANSITIVE

PRES3SG

PRESENT 3SG

3PERS SING

bakes cookedfalls

Type hierarchy vs. templates

! Templates can play the same role as
hierarchical type systems in theories like HPSG

! A notational device for factoring descriptions
– Interpreted as simple substitution

– Not part of a formal ontology

– Do not require an elaborate mathematical
characterization

Templates also invoked by Rules

! Rule annotations can also call templates
– Global changes, typo prevention

! Example: adjunct annotation
PP: ! $ (^ ADJUNCT) (! ADJ-TYPE)=VP

ADVP: ! $ (^ ADJUNCT) (! ADJ-TYPE)=VP

ADJ(_T) = ! $ (^ ADJUNCT) (! ADJ-TYPE)=_T.

PP: @(ADJ VP) PP: @(ADJ NP)

ADVP: @(ADJ VP) ADVP: @(ADJ S)

Templates: Rules

Example: null pronouns
Push it!

NULL-PRON(_P) = (_P PRED)=‘pro’

 (_P PRON-TYPE)=null.

VPimp --> VP: @(NULL-PRON (^ SUBJ)).

VPimp --> VP: (^ SUBJ PRED)=‘pro’

 (^ SUBJ PRON-TYPE)=null.

Templates and “Principles”

! Subject principle: every verb has a subject.

! Implementaton:
 VERB = (^ SUBJ).

– Put @VERB in every verbal entry.

or

– Put @VERB in the templates called by the verbal
entries.

Lexical Rules

! Theoretical construct

! Templates can often achieve the same result
– Disjunction of several templates

– Parameterization of a complex template

Lexical Rules are not All-Powerful:

 • great for Argument Deletion or Alternation

 • not suitable for Argument Addition

Benefactives

Benefactives can appear with many (?all) verbs in
English.

Mary baked a cake for Jane.

Mary ran for cancer research.

Mary baked Jane a cake. Dative Shift!

Benefactives

In German, the distribution of “free datives” is
different, but not well described.

*Maria schwamm ihm.

`Maria swam (for) him.’

Maria buk Jana einen Kuchen. (German)
`Maria baked Jana a cake.’

Maria kaufte ihm einen Kuchen. (German)
`Maria bought him a cake.’

Representation

• In many languages benefactives act like
arguments (e.g., dative shift, German dative)

• How can we create appropriate lexical entries?
– want to capture generalizations

– control interactions with other argument alternation
processes

Expanded Lexical Entries

• Could list the benefactive alternation in the
lexical entries
– go V { (^PRED)='_P<(^SUBJ)>'

 |(^PRED)='_P<(^SUBJ)(^BEN)>'}

– miss generalization about distribution

– prone to error in entries

• Using templates can help
– go V @(V-SUBJ go).

– V-SUBJ(_P) = { (^PRED)='_P<(^SUBJ)>'

 |(^PRED)='_P<(^SUBJ)(^BEN)>'}

Lexical Rules

• Expanding templates does not capture
regularity

• Would like something like the passive lexical
rule
PASS(_SUBCAT) =

 { _SUBCAT (^PASS)=- "Mary baked the cake"

 |_SUBCAT

 (^OBJ)-->(^SUBJ) (^PASS)=+

 { (^SUBJ)-->(^OBJ-AG) "The cake was baked by Mary"

 |(^SUBJ)-->NULL "The cake was baked"

 }}

Benefactive Lexical Rule

• From a theoretical perspective, a
benefactive lexical rule seems simple
 bene(_SUBCAT) =
 _SUBCAT
 NULL --> (^ BEN).

– For the passive, SUBJ became NULL
(^ PRED)='bake<NULL,(^SUBJ)>'

– For the benefactive, NULL becomes BEN

NULL --> (^ BEN)

• This simple looking statement has serious
implementational effects

• Where in the argument slots should the new
argument be realized?
– (^PRED)='bake<(^SUBJ)(^OBJ)(^BEN)>'

– (^PRED)='bake<(^SUBJ)(^BEN)(^OBJ)>'

– (^PRED)='bake<(^BEN)(^SUBJ)(^OBJ)>'

Linguistically probably an OBL-GO and
want first option since LFG assumes a
hierarchy of Grammatical Functions.

A-Str and F-Str

A-str Hierarchy: agent < goal/exp < th/pt

GF Hierarchy: SUBJ < OBJ < OBJ-TH < OBL

Linking Theory tries to match up these hierarchies
as best as possible, but allows for variation.

But Linking Theory, as seemingly simple as it
is, has not been implemented.

Still, XLE encodes argument structure as separate
from GFs (although it doesn’t make this obvious).

Representation of PREDs

• (^PRED)='seem<(^OBL)(^COMP)>(^SUBJ)'
– It seems to me that this is difficult.

• Internal representation:
 PRED(var(0), seem) citation form of verb

lex_id(var(0),1) unique index of verb
SUBJ(var(0), var(1)) name of GF
nonarg(var(0),1,var(1)) (non)arg slot of GF
OBL(var(0),var(2))
arg(var(0),1,var(2))
COMP(var(0),var(3))
arg(var(0),2,var(3)) XLE

Renaming Arguments

• Renaming an argument affects the name part
of the PRED facts
– OBJ(var(0), var(1)) ==> SUBJ(var(0), var(1))

– main issue is not to create two arguments of the
same name (violation of uniqueness in LFG)

Deleting Arguments

• Deleting an argument removes the name and
alters the (non)arg fact
– SUBJ(var(0), var(1)) ==> 0

– arg(var(0),1,var(1)) ==> arg(var(0),1,NULL)

• NULL holds a slot in the PRED, but is not
subject to completeness and coherence

• Since the (non)arg fact remains, no other
arguments of the PRED are affected

Adding an Argument

• Need to know both name and (non)arg
number
– Name is usually easy (e.g. BEN, OBL-GO)

• Number (position among the PRED's
arguments) is much more difficult
– Make it the first

– Make it the last

– Specify for each case

New Argument is First
• If the new argument is first, all the other

arguments need to be (automatically) moved over
one slot

– NULL --> (^ BEN)

– BEN(var(0),var(3))
arg(var(0),1,var(3))
SUBJ(var(0),var(1))
arg(var(0),2,var(1))
OBJ(var(0),var(2))

 arg(var(0),3,var(2))

– (^ PRED)='bake<(^BEN)(^SUBJ)(^OBJ)>'

New Argument is Last

• If the new argument is last, the correct new slot
number must be tallied, but the existing
arguments are not affected

• NULL --> (^ BEN)
– BEN(var(0),var(3))

arg(var(0),3,var(3))
SUBJ(var(0),var(1))
arg(var(0),1,var(1))

 OBJ(var(0),var(2))
 arg(var(0),2,var(2))

– (^ PRED)='bake<(^SUBJ)(^OBJ)(^BEN)>'

New Argument is Specified
• If the new argument is specified, the correct new

slot number is known, but

– any arguments following it must be incremented

– need to be careful not to leave gaps in numbering

• NULL --> (^ BEN), arg(%%,2,%%)

– BEN(var(0),var(3))
arg(var(0),2,var(3))
SUBJ(var(0),var(1))
arg(var(0),1,var(1))

 OBJ(var(0),var(2))
 arg(var(0),3,var(2))

– (^ PRED)='bake<(^SUBJ)(^BEN)(^OBJ)>'

Theory vs. Implementation
• Implementationally, all three possibilities feasible

– first, last, specified

– specifying provides the most control but also the most
room for error (creation of invalid PREDs)

• Theoretically, these constructions are not well
understood, but probably inserting the BEN last is
desirable.

– XLE implementation is waiting for theoretical guidance in
making a choice

– The xfr system can manipulate PREDs in this way, but
this does not help parsing

Other Possibility:
Benefactives as the Reverse of

Passive

• Have a benefactive argument slot in all verb
frames
– (^PRED)='_P<(^SUBJ)(^BEN)>'

– (^PRED)='_P<(^SUBJ)(^OBJ)(^BEN)>'

– …

• Have a lexical rule to rewrite this slot to
NULL

Benefactive Lexical Rule

• bene(_SUBCAT) -->
{ _SUBCAT "Mary baked a cake for Jane"

 |_SUBCAT

 (^BEN)-->NULL "Mary baked a cake"

}

• Works technically, but non-benefactives
have unintuitive null argument
– (^PRED)='bake<(^SUBJ)(^OBJ) NULL>'

Interactions with Other Lexical
Rules

• Other lexical rules can alter the benefactive
slot or pass it through
– similar to any other argument

– passive+benefactive
• Mary baked a cake for Jane no pass, no bene-del

 (^PRED)='bake<(^SUBJ)(^OBJ)(^BEN)>'

• A cake was baked for Jane pass, no bene-del

 (^PRED)='bake<NULL (^SUBJ) (^BEN)>'

• A cake was baked pass, bene-del

 (^PRED)='bake<NULL (^SUBJ) NULL>'

Interactions continued

• Passive could act on benefactive if this was
appropriate
– I jumped for Mary
 (^PRED)='jump<(^SUBJ)(^BEN)>'
– (For) Mary was jumped by me
 (^PRED)='jump<NULL (^SUBJ)>'

• Ordering of application is important since
cannot rename an argument once it is made
NULL
– pass applied before bene-del above

Benefactives Summary

• Intuitively, benefactives add an argument to a
predicate

• Implementationally, this is complicated
because where this argument is in the PRED
must be specified

• One possibility is to always posit the
benefactive and then delete it via a lexical rule,
as with passive

• However, this possibility is not supported by
crosslinguistic facts, e.g., Bantu Applicatives.

Applicatives/Morphology

One would not posit a BEN argument for
all verbs in these types of languages, since
the morphology provides the clue!

Chichewa (extra beneficiary argument
licensed via morphology on the verb).

