
Grammar Complexity	

	

	

Miriam Butt	

October 2012	

Jurafsky and Martin, Chapter 16	

Complexity	

•  How Complex is a given Problem? 	

•  What formal mechanisms best model this complexity?	

Natural Language: used to be thought of as a sort of
“code”. That is hard, but regular.	

Now: mind-bogglingly complex.	

But: is it an unsolvable problem?	

Generative Power	

Given a set of rules and a lexicon, what well-formed
expressions can we generate and do those adequately
cover the empirical data we observe?	

“One grammar is of greater generative power or
complexity than another if it can define a language that
the other cannot define.” (J&M p. 564)	

Chomsky defined a theory of language (syntax) in terms
of generative linguistics. 	

The Chomsky Hierarchy	

Regular (or Right Linear) Languages	

Context Free Languages	

 Context Sensitive Languages	

 Turing Equivalent	

Natural Language	

Is it regular? 	
 Overall no. 	

But, subparts of it are: phonology and morphology	

(can be treated via FST which are known to be regular, 	

Kaplan and Kay 1994, Karttunen 2002).	

How can we tell if a language is not regular? 	

The Pumping Lemma	

The Pumping Lemma	

Let L be an infinite regular language. Then there are
strings x, y, and z, such that y ≠ ε and xynz ∈ L for n ≥ 0.	

an bn is not a part of this language (from J&M 16.2.1)	

If a language is regular, it can be modeled by a FSA. 	

If you have a string which is longer than the fixed
number of, the FSA must have a loop. 	

Trying to Solve an bn 	

See if one can get to an bn via xynz.	

So an bn is not a regular language.	

1.  Assume y is composed of as. Then x is all as as well,
z all bs. But if so, then always have more as than bs!	

2.  Assume y is composed of bs. Then z is all bs as well,
x all as. But if so, then always have more bs than as!	

3.  Assume y is composed of as and bs. Then z is all bs,
x all as. But if so, then also allow some bs before as,
so no good either. 	

Natural Language	

an bn-1 so, not a regular language	

Natural Language contains strings like: 	

The cat likes tuna fish.	

The cat the dog chased likes tuna fish.	

The cat the dog the rat bit chased likes tuna fish.	

The cat the dog the rat the elephant admired bit chased
likes tuna fish. 	

Natural Language	

wan bmxcn dmy so, not a regular language	

Another famous case: Swiss cross-serial dependencies 	

Jan säit das, 	

… mer em Hans es huus hälfed aastriche. 	

 we the Hans.Dat the house.Acc helped paint	

… mer d’chindn em Hansm es huus haend wele laan hälfem aastriche. 	

 we the children.Acc the Hans.Dat the house.Acc have wanted let helped paint	

Natural Language	

Is it context-free? 	
 No. 	

So, Natural Language turns out to be a very hard problem:
an NP-complete problem (term from computer science). 	

Should we give up? 	
 No --- there are still ways to
make things computable.	

The Chomsky Hierarchy	

Regular (or Right Linear) Languages	

(finite-state automata)	

Context Free Languages	

(simple phrase structure rules)	

 Context Sensitive Languages 	

(most formal theories of grammar)	

 Turing Equivalent 	

(any machine, don’t want to be this, ever)	

Chomsky Hierarchy via Rules ���
(cf. J&M p. 565)	

Type 	
 	
 	
 	
Rule Skeleton	

Turing Equivalent 	
 	
α è β, s.t. α ≠ ε	

Context Sensitive 	
 	
αΑβ è αγβ, s.t. γ ≠ ε	

Context Free 	
 	
 	
Α è γ	

Regular 	
 	
 Α è χΒ or Αè χ 	

Where A is a single non-terminal,	

 α, β, γ are arbitrary strings of terminal and non-terminal 	

	
symbols	

The Chomsky Hierarchy���
(amended Version, cf. J&M)	

Regular (or Right Linear) Languages	

(finite-state automata)	

Context Free Languages	

(simple phrase structure rules)	

 Context Sensitive Languages 	

(MB: LFG goes here, I think)	

 Turing Equivalent 	

(HPSG, LFG (?really?), Minimalism)	

 Mildly Context Sensitive Languages 	

(CCG, TAG)	

Decidability	

The more you know about the formal properties of an
underlying syntactic theory, the better. 	

Montonicity: this basically means you do not overwrite
information once you’ve got it as part of your analysis. 	

Mathematical Proofs: based on the properties of
one’s formal theory, one can prove whether it is
decidable or not. 	

Decidability	

The more you know about the formal properties of an
underlying syntactic theory, the better. 	

GB/Minimalism: couched in a very formal way, but
includes unconstrained movements, which makes it non-
monotonic and puts it into the space of a Turing Machine. 	

HPSG: formal properties still under debate and an
active area of research (e.g., Lexical Rules). 	

LFG: formal properties well understood and has been
proven to be decidable (Kaplan and Bresnan 1982,
Backofen 1993). 	

Decidability	

“First, an explanatory linguistic theory undoubtedly will impose a
variety of substantive constraints on how our formal devices may
be employed in grammars of human languages. ... It is quite
possible that the worst case computational complexity for the
subset of lexical-functional grammars that conform to such
constraints will be plausibly sub-exponential.” [Kaplan and
Bresnan 1982] 	

In practice, one can (and does) also come up with
smart computational techniques that avoide the worst-
case scenario. 	

