
XLE:XLE:

 Grammar Development Platform Grammar Development Platform

 Parser/Generator Parser/Generator

Miriam ButtMiriam Butt ((UniversitUniversitäätt KonstanzKonstanz))

Tracy Holloway King (PARC)Tracy Holloway King (PARC)

COLING 2004COLING 2004 TutorialTutorial

COLING 2004: XLE tutorial

Tutorial OutlineTutorial Outline

! What is a deep grammar and why would you want
one?

! XLE: A First Walkthrough

! Robustness techniques

! Generation

! Disambiguation

! Applications:
– Machine Translation

– Sentence Condensation

– Computer Assisted Language Learning (CALL)

– Knowledge Representation

COLING 2004: XLE tutorial

Applications of Language EngineeringApplications of Language Engineering

Functionality

D
o

m
a

in
 C

o
v
e

ra
g

e

Low

N
a

rr
o

w
B

ro
a
d

High

Alta
Vista

AskJeeves

Google

Post-Search
Sifting

Autonomous
Knowledge Filtering

Natural
Dialogue

Knowledge
Fusion

Microsoft
Paperclip

Manually-tagged
Keyword Search

Document Base
Management

Restricted
Dialogue

Useful
Summary

Good
Translation

COLING 2004: XLE tutorial

Deep grammarsDeep grammars

! Provide detailed syntactic/semantic analyses

– HPSG (LinGO, Matrix), LFG (ParGram)

– Grammatical functions, tense, number, etc.
Mary wants to leave.

 subj(want~1,Mary~3)

 comp(want~1,leave~2)

 subj(leave~2,Mary~3)

 tense(leave~2,present)

! Usually manually constructed

COLING 2004: XLE tutorial

Why would you want Why would you want one?one?

! Meaning sensitive applications

– overkill for many NLP applications

! Applications which use shallow methods for
English may not be able to for "free" word
order languages

– can read many functions off of trees in English
» subj: NP sister to VP

» obj: first NP sister to V

– need other information in German, Japanese, etc.

COLING 2004: XLE tutorial

Deep analysis mattersDeep analysis matters……

 if you care about the answerif you care about the answer

Example:

A delegation led by Vice President Philips, head of the chemical
 division, flew to Chicago a week after the incident.

Question: Who flew to Chicago?

Candidate answers:

division closest noun

head next closest

V.P. Philips next

shallow but wrong

delegation furthest away but

Subject of flew
deep and right

COLING 2004: XLE tutorial

Why don't people use them?Why don't people use them?

! Time consuming and expensive to write
– shallow parsers can be induced automatically from

a training set

! Brittle
– shallow parsers produce something for everything

! Ambiguous
– shallow parsers rank the outputs

! Slow
– shallow parsers are very fast (real time)

! Other gating items for applications that need
deep grammars

COLING 2004: XLE tutorial

Why should one pay attention now?Why should one pay attention now?

! Robustness:

– Integrated Chunk Parsers

– Bad input always results in some (possibly good) output

! Ambiguity:

– Integration of stochastic methods

– Optimality Theory used to rank/pick alternatives

! Speed: comparable to shallow parsers

! Accuracy and information content:

– far beyond the capabilities of shallow parsers.

New Generation of Large-Scale Grammars:

COLING 2004: XLE tutorial

XLE at PARCXLE at PARC

! Platform for Developing Large-Scale LFG
Grammars

! LFG (Lexical-Functional Grammar)
– Invented in the 1980s

(Joan Bresnan and Ronald Kaplan)

– Theoretically stable ! Solid Implementation

! XLE is implemented in C, used with emacs, tcl/tk

! XLE includes a parser, generator and transfer
component.

COLING 2004: XLE tutorial

Basic LFGBasic LFG

! Constituent-Structure: tree

! Functional-Structure: Attribute Value Matrix

 universal

NP

PRON

 they

S

VP

 V

appear

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'

COLING 2004: XLE tutorial

Grammar componentsGrammar components

! Configuration: links components

! Annotated phrase structure rules

! Lexicon

! Templates

! Other possible components

– Finite State (FST) morphology

– disambiguation feature file

COLING 2004: XLE tutorial

Basic configuration fileBasic configuration file

TOY ENGLISH CONFIG (1.0)

ROOTCAT S.

FILES .

LEXENTRIES (TOY ENGLISH).

RULES (TOY ENGLISH).

TEMPLATES (TOY ENGLISH).

GOVERNABLERELATIONS SUBJ OBJ OBJ2 OBL COMP XCOMP.

SEMANTICFUNCTIONS ADJUNCT TOPIC.

NONDISTRIBUTIVES NUM PERS.

EPSILON e.

OPTIMALITYORDER

 NOGOOD.

COLING 2004: XLE tutorial

Grammar sectionsGrammar sections

! Rules, templates, lexicons

! Each has:
– version ID

– component ID

– XLE version number (1.0)

– terminated by four dashes ----

! Example
STANDARD ENGLISH RULES (1.0)

COLING 2004: XLE tutorial

Syntactic rulesSyntactic rules

! Annotated phrase structure rules

 Category --> Cat1: Schemata1;

 Cat2: Schemata2;

 Cat3: Schemata3.

 S --> NP: (^ SUBJ)=!

 (! CASE)=NOM;

 VP: ^=!.

COLING 2004: XLE tutorial

Another sample ruleAnother sample rule

 "indicate comments"

VP --> V: ^=!; "head"

 (NP: (^ OBJ)=! "() = optionality"

 (! CASE)=ACC)

 PP*: ! $ (^ ADJUNCT). "$ = set"

VP consists of:

 a head verb

 an optional object

 zero or more PP adjuncts

COLING 2004: XLE tutorial

LexiconLexicon

! Basic form for lexical entries:
word Category1 Morphcode1 Schemata1;

 Category2 Morphcode2 Schemata2.

walk V * (^ PRED)='WALK<(^ SUBJ)>';

 N * (^ PRED) = 'A-WALK' .

girl N * (^ PRED) = 'A-GIRL'.

kick V * { (^ PRED)='KICK<(^ SUBJ)(^ OBJ)>'

 |(^ PRED)='KICK<(^ SUBJ)>'}.

the D * (^ DEF)=+.

COLING 2004: XLE tutorial

TemplatesTemplates

! Express generalizations

– in the lexicon

– in the grammar

– within the template space

No Template

girl N * (^ PRED)='GIRL'

 { (^ NUM)=SG

 (^ DEF)

 |(^ NUM)=PL}.

With Template

TEMPLATE: CN = { (^ NUM)=SG

(^ DEF)

 |(^ NUM)=PL}.

girl N * (^ PRED)='GIRL' @CN.

boy N * (^ PRED)='BOY' @CN.
COLING 2004: XLE tutorial

Template example cont.Template example cont.

! Parameterize template to pass in values

CN(P) = (^ PRED)='P'

 { (^ NUM)=SG

 (^ DEF)

 |(^ NUM)=PL}.

! Template can call other templates

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.

TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'.

OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.

girl N * @(CN GIRL).

boy N * @(CN BOY).

COLING 2004: XLE tutorial

Parsing a stringParsing a string

! create-parser demo-eng.lfg

! parse "the girl walks"

Walkthrough Demo

COLING 2004: XLE tutorial

Outline: RobustnessOutline: Robustness

! Missing vocabulary

– you can't list all the proper names in the world

! Missing constructions

– there are many constructions theoretical linguistics
rarely considers (e.g. dates, company names)

! Ungrammatical input

– real world text is not always perfect

– sometimes it is really horrendous

Dealing with brittleness

COLING 2004: XLE tutorial

Dealing with Missing VocabularyDealing with Missing Vocabulary

! Build vocabulary based on the input of
shallow methods

– fast

– extensive

– accurate

! Finite-state morphologies

 falls -> fall +Noun +Pl

 fall +Verb +Pres +3sg

! Build lexical entry on-the-fly from the
morphological information

COLING 2004: XLE tutorial

Building lexical entriesBuilding lexical entries

! Lexical entries
-unknown N XLE @(COMMON-NOUN %stem).

+Noun N-SFX XLE @(PERS 3).

+Pl N-NUM XLE @(NUM pl).

! Rule
 Noun -> N N-SFX N-NUM.

! Structure
 [PRED 'fall'

 NTYPE common

 PERS 3

 NUM pl]

COLING 2004: XLE tutorial

Guessing wordsGuessing words

! Use FST guesser if the morphology doesn't
know the word

– Capitalized words can be proper nouns
Saakashvili -> Saakashvili +Noun +Proper +Guessed

– ed words can be past tense verbs or adjectives
fumped -> fump +Verb +Past +Guessed

 fumped +Adj +Deverbal +Guessed

COLING 2004: XLE tutorial

Using the lexiconsUsing the lexicons

! Rank the lexical lookup

1. overt entry in lexicon

2. entry built from information from morphology

3. entry built from information from guesser
» quality will depend on language type

! Use the most reliable information

! Fall back only as necessary

COLING 2004: XLE tutorial

Missing constructionsMissing constructions

! Even large hand-written grammars are not
complete

– new constructions, especially with new corpora

– unusual constructions

! Generally longer sentences fail

! Build up as much as you can; stitch together
the pieces

Solution: Fragment and Chunk Parsing

COLING 2004: XLE tutorial

Grammar engineering approachGrammar engineering approach

! First try to get a complete parse

! If fail, build up chunks that get complete
parses

! Have a fall-back for things without even
chunk parses

! Link these chunks and fall-backs together in a
single structure

COLING 2004: XLE tutorial

Fragment Chunks: Sample outputFragment Chunks: Sample output

! the the dog appears.

! Split into:

– "token" the

– sentence "the dog appears"

– ignore the period

COLING 2004: XLE tutorial

F-structureF-structure

COLING 2004: XLE tutorial

Ungrammatical inputUngrammatical input

! Real world text contains ungrammatical input

– typos

– run ons

– cut and paste errors

! Deep grammars tend to only cover
grammatical input

! Two strategies

– robustness techniques: guesser/fragments

– disprefered rules for ungrammatical structures

COLING 2004: XLE tutorial

Harnessing Optimality TheoryHarnessing Optimality Theory

! Optimality Theory (OT) allows the statement
of preferences and dispreferences.

! In XLE, OT-Marks (annotations) can be
added to rules or lexical entries to either
prefer or disprefer a certain structure/item.

+Mark = preference

 Mark = dispreference

! The strength of (dis)preference can be set
variably.

COLING 2004: XLE tutorial

OT RankingOT Ranking

! Order of Marks: Mark3 is preferred to Mark4

OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1.

! NOGOOD Mark: Marks to the left are always bad.
Useful for parametrizing grammar with respect to certain
domains

OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2

+Mark1.

! STOPPOINT Mark: slowly increases the search space of
the grammar if no good solution can be found (multipass
grammar)

OPTIMALITYORDER Mark4 NOGOOD Mark3

STOPPOINT Mark2 STOPPOINT Mark1.
COLING 2004: XLE tutorial

Rule Annotation (O-Projection)Rule Annotation (O-Projection)

! Common errors can be coded in the rules

mismatched subject-verb agreement

 Verb3Sg = { (^ SUBJ PERS) = 3

 (^ SUBJ NUM) = sg

 | @(OTMARK BadVAgr) }

! Disprefer parses of ungrammatical structure

– tools for grammar writer to rank rules

– two+ pass system

COLING 2004: XLE tutorial

Robustness via Optimality MarksRobustness via Optimality Marks

Demo

Ungrammatical Sentences

The girls walks.

The the dog appears.

english.lfg (Tokenizer, FST Morphology)

COLING 2004: XLE tutorial

Robustness SummaryRobustness Summary

! Integrate shallow methods

– morphologies (finite state)

– guessers

! Fall back techniques

– fragment grammar (chunks)

– disprefered rules (OT)

COLING 2004: XLE tutorial

Generation OutlineGeneration Outline

! Why generate?

! Generation as the reverse of parsing

! Constraining generation (OT)

! The generator as a debugging tool

! Generation from underspecified structures

COLING 2004: XLE tutorial

Why generate?Why generate?

! Machine translation

Lang1 string -> Lang1 fstr -> Lang2 fstr -> Lang2 string

! Sentence condensation

Long string -> fstr -> smaller fstr -> new string

! Question answering

! Grammar debugging

COLING 2004: XLE tutorial

Generation: Generation: justjust reverse the parser reverse the parser

! XLE uses the same basic grammar to parse
and generate

– Parsing: string to analysis

– Generation: analysis to string

! Input to Generator is the f-structure analysis

! Formal Properties of LFG Generation:

– Generation produces Context Free Languages

– LFG generation is a well-understood formal system
(decidability, closure).

COLING 2004: XLE tutorial

Generation: justGeneration: just reverse the parser reverse the parser

! Advantages

– maintainability

– write rules and lexicons once

! But

– special generation tokenizer

– different OT ranking

COLING 2004: XLE tutorial

Restricting GenerationRestricting Generation

! Do not always want to generate all the possibilities
that can be parsed

! Put in special OT marks for generation to block or
prefer certain strings
– fix up bad subject-verb agreement

– only allow certain adverb placements

– control punctuation options

! GENOPTIMALITYORDER
– special ordering for OT generation marks that is kept separate

from the parsing marks

– serves to parametrize the grammar (parsing vs. generation)

COLING 2004: XLE tutorial

Generation Generation tokenizertokenizer

! White space

– Parsing: multiple white space becomes a single
TB

John appears. -> John TB appears TB . TB

– Generation: single TB becomes a single space

 (or nothing)
John TB appears TB . TB -> John appears.

 *John appears .

COLING 2004: XLE tutorial

Generation Generation tokenizertokenizer

! Capitalization

– Parsing: optionally decap initially
They came -> they came

Mary came -> Mary came

– Generation: always capitalize initially
they came -> They came

 *they came

! May regularize other options

– quotes, dashes, etc.

COLING 2004: XLE tutorial

Generation morphologyGeneration morphology

! Suppress variant forms

– Parse both favor and favour

– Generate only one

COLING 2004: XLE tutorial

MorphconfigMorphconfig for parsing & generation for parsing & generation

STANDARD ENGLISH MOPRHOLOGY (1.0)

TOKENIZE:

P!eng.tok.parse.fst G!eng.tok.gen.fst

ANALYZE:

eng.infl-morph.fst G!amerbritfilter.fst

G!amergen.fst

COLING 2004: XLE tutorial

Reversing the parsing grammarReversing the parsing grammar

! The parsing grammar rules can be used
directly as a generator

! Adapt the grammar rule set with a special OT
ranking GENOPTIMALITYORDER

! Why do this?

– parse ungrammatical input

– have too many options: one f-structure
corresponds to many surface strings

COLING 2004: XLE tutorial

Ungrammatical inputUngrammatical input

! Linguistically ungrammatical

– They walks.

– They ate banana.

! Stylistically ungrammatical

– No ending punctuation: They appear

– Superfluous commas: John, and Mary appear.

– Shallow markup: [NP John and Mary] appear.

COLING 2004: XLE tutorial

Too many optionsToo many options

! All the generated options can be linguistically
valid, but too many for applications

! Occurs when more than one string has the
same, legitimate f-structure

! PP placement:

– In the morning I left. I left in the morning.

COLING 2004: XLE tutorial

Using the Gen OT rankingUsing the Gen OT ranking

! Generally much simpler than in the parsing
direction

– Usually only use standard marks and NOGOOD

no STOPPOINT

– Can have a few marks that are shared by several
constructions

 one or two for disprefered

 one or two for prefered

COLING 2004: XLE tutorial

Example: Comma in Example: Comma in coordcoord

COORD(_CAT) = _CAT: @CONJUNCT;

 (COMMA: @(OTMARK GenBadPunct))

 CONJ

 _CAT: @CONJUNCT.

GENOPTIMALITYORDER GenBadPunct NOGOOD.

parse: They appear, and disappear.

generate: without OT: They appear(,) and disappear.

 with OT: They appear and disappear.

COLING 2004: XLE tutorial

Example: Prefer initial PPExample: Prefer initial PP

S --> (PP: @ADJUNCT @(OT-MARK GenGood))

 NP: @SUBJ;

 VP.

VP --> V

 (NP: @OBJ)

 (PP: @ADJUNCT).

GENOPTIMALITYORDER NOGOOD +GenGood.

with OT: In the morning they appear.

parse: they appear in the morning.

generate: without OT: In the morning they appear.

 They appear in the morning.

COLING 2004: XLE tutorial

Generation commandsGeneration commands

! XLE command line:
– regenerate "They appear."

– generate-from-file my-file.pl

– (regenerate-from-directory, regenerate-testfile)

! F-structure window:

– commands: generate from this fs

! Debugging commands

– regenerate-morphemes

COLING 2004: XLE tutorial

Debugging the generatorDebugging the generator

! When generating from an f-structure produced
by the same grammar, XLE should always
generate

! Unless:

– OT marks block the only possible string

– something is wrong with the tokenizer/morphology

 regenerate-morphemes: if this gets a string

 the tokenizer/morphology is not the problem

! XLE has generation robustness features

– seeing what is added/removed helps with debugging

COLING 2004: XLE tutorial

Underspecified InputUnderspecified Input

! F-structures provided by applications are not
perfect
– may be missing features

– may have extra features

– may simply not match the grammar coverage

! Missing and extra features are often
systematic
– specify in XLE which features can be added and

deleted

! Not matching the grammar is a more serious
problem

COLING 2004: XLE tutorial

Creating ParadigmsCreating Paradigms

! Deleting and adding features within one
grammar can produce paradigms

! Specifiers:
– set-gen-adds remove "SPEC"

 set-gen-adds add "SPEC DET DEMON"

– regenerate "NP: boys"

{ the | those | these | } boys

etc.

COLING 2004: XLE tutorial

Generation for DebuggingGeneration for Debugging

! Checking for grammar and lexicon errors

– create-generator english.lfg

– reports ill-formed rules, templates, feature
declarations, lexical entries

! Checking for ill-formed sentences that can be
parsed

– parse a sentence

– see if all the results are legitimate strings

– regenerate “they appear.”

COLING 2004: XLE tutorial

Regeneration exampleRegeneration example

% regenerate "In the park they often see the boy with
the telescope."

parsing {In the park they often see the boy with the
telescope.}

4 solutions, 0.39 CPU seconds, 178 subtrees unified

{They see the boy in the park|In the park they see the
boy} often with the telescope.

regeneration took 0.87 CPU seconds.

COLING 2004: XLE tutorial

Regenerate Regenerate testfiletestfile

! regenerate-testfile

! produces new file: testfile.regen

– sentences with parses and generated strings

– lists sentences with no strings

– if have no Gen OT marks, everything should
generate back to itself

COLING 2004: XLE tutorial

Summary:Summary:

Generation and ReversibilityGeneration and Reversibility

! XLE parses and generates on the same
grammar

– faster development time

– easier maintenance

! Minor differences controlled by:

– OT marks

– FST tokenizers

Demo

Generator

COLING 2004: XLE tutorial

Ambiguity OutlineAmbiguity Outline

! Sources of Ambiguity:
– Alternative c-structure rules

– Disjunctions in f-structure description

– Lexical categories

! XLE’s display/computation of ambiguity
– Packed representations

– Dependent choices

! Dealing with ambiguity
– Recognize legitimate ambiguity

– OT marks for preferences

– Shallow Markup/Tagging

– Stochastic disambiguation

COLING 2004: XLE tutorial

AmbiguityAmbiguity

! Deep grammars are massively ambiguous

! Use packing to parse and manipulate the
ambiguities efficiently

! Trim early with shallow markup

– fewer parses to choose from

– faster parse time

! Choose most probable parse for applications
that need a single input

COLING 2004: XLE tutorial

Syntactic AmbiguitySyntactic Ambiguity

! Lexical

– part of speech

– subcategorization frames

! Syntactic

– attachments

– coordination

! Implemented system highlights interactions

COLING 2004: XLE tutorial

Lexical Ambiguity: POSLexical Ambiguity: POS

! verb-noun
I saw her duck.

 I saw [NP her duck].

 I saw [NP her] [VP duck].

! noun-adjective
the [N/A mean] rule

 that child is [A mean].

 he calculated the [N mean].

COLING 2004: XLE tutorial

Morphology and POS ambiguityMorphology and POS ambiguity

! English has impoverished morphology and
hence extreme POS ambiguity

– leaves: leave +Verb +Pres +3sg

 leaf +Noun +Pl

 leave +Noun +Pl

– will: +Noun +Sg

 +Aux

 +Verb +base

! Even languages with extensive morphology
have ambiguities

COLING 2004: XLE tutorial

Lexical ambiguity: Lexical ambiguity: SubcatSubcat frames frames

! Words often have more than one
subcategorization frame

– transitive/intransitive

 I broke it./It broke.

– intransitive/oblique

 He went./He went to London.

– transitive/transitive with infinitive

 I want it./I want it to leave.

COLING 2004: XLE tutorial

SubcatSubcat-Rule interactions-Rule interactions

! OBL vs. ADJUNCT with intransitive/oblique

– He went to London.

 [PRED ‘go<(^ SUBJ)(^ OBL)>’

 SUBJ [PRED ‘he’]

 OBL [PRED ‘to<(^ OBJ)>’

 OBJ [PRED ‘London’]]]

 [PRED ‘go<(^ SUBJ)>’

 SUBJ [PRED ‘he’]

 ADJUNCT { [PRED ‘to<(^ OBJ)>’

 OBJ [PRED ‘London’]]}]

COLING 2004: XLE tutorial

OBL-ADJUNCT cont.OBL-ADJUNCT cont.

! Passive by phrase
– It was eaten by the boys.

 [PRED ‘eat<(^ OBL-AG)(^ SUBJ)>’

 SUBJ [PRED ‘it’]

 OBL-AG [PRED ‘by<(^ OBJ)>’

 OBJ [PRED ‘boy’]]]

– It was eaten by the window.

 [PRED ‘eat<NULL(^ SUBJ)>’

 SUBJ [PRED ‘it’]

 ADJUNCT { [PRED ‘by<(^ OBJ)>’

 OBJ [PRED ‘boy’]]}]

COLING 2004: XLE tutorial

OBJ-TH and Noun-Noun compoundsOBJ-TH and Noun-Noun compounds

! Many OBJ-TH verbs are also transitive

– I took the cake. I took Mary the cake.

! The grammar needs a rule for noun-noun
compounds

– the tractor trailer, a grammar rule

! These can interact

– I took the grammar rules

– I took [NP the grammar rules]

– I took [NP the grammar] [NP rules]

COLING 2004: XLE tutorial

Syntactic AmbiguitiesSyntactic Ambiguities

! Even without lexical ambiguity, there is
legitimate syntactic ambiguity

– PP attachment

– Coordination

! Want to:

– constrain these to legitimate cases

– make sure they are processed efficiently

COLING 2004: XLE tutorial

PP AttachmentPP Attachment

! PP adjuncts can attach to VPs and NPs

! Strings of PPs in the VP are ambiguous

– I see the girl with the telescope.

 I see [the girl with the telescope].

 I see [the girl] [with the telescope].

! This ambiguity is reflected in:

– the c-structure (constituency)

– the f-structure (ADJUNCT attachment)

COLING 2004: XLE tutorial

PP attachment cont.PP attachment cont.

! This ambiguity multiplies with more PPs

– I saw the girl with the telescope

– I saw the girl with the telescope in the garden

– I saw the girl with the telescope in the garden

on the lawn

! The syntax has no way to determine the
attachment, even if humans can.

COLING 2004: XLE tutorial

Ambiguity in coordinationAmbiguity in coordination

! Vacuous ambiguity of non-branching trees

– this can be avoided

! Legitimate ambiguity

– old men and women

 old [N men and women]

 [NP old men] and [NP women]

– I turned and pushed the cart

 I [V turned and pushed] the cart

 I [VP turned] and [VP pushed the cart]

COLING 2004: XLE tutorial

Grammar Engineering and ambiguityGrammar Engineering and ambiguity

! Large-scale grammars will have lexical and
syntactic ambiguities

! With real data they will interact resulting in
many parses

– these parses are legitimate

– they are not intuitive to humans

! XLE provides tools to manage ambiguity

– grammar writer interfaces

– computation

COLING 2004: XLE tutorial

XLE displayXLE display

! Four windows

– c-structure (top left)

– f-structure (bottom left)

– packed f-structure (top right)

– choice space (bottom right)

! C-structure and f-structure “next” buttons

! Other two windows are packed
representations of all the parses

– clicking on a choice will display that choice in the
left windows

COLING 2004: XLE tutorial

ExampleExample

! I see the girl in the garden

! PP attachment ambiguity

– both ADJUNCTS

– difference in ADJUNCT-TYPE

COLING 2004: XLE tutorial

Packed F-structure and Choice spacePacked F-structure and Choice space

COLING 2004: XLE tutorial

Sorting through the analysesSorting through the analyses

! “Next” button on c-structure and then f-
structure windows
– impractical with many choices

– independent vs. interacting ambiguities

– hard to detect spurious ambiguity

! The packed representations show all the
analyses at once
– (in)dependence more visible

– click on choice to view

– spurious ambiguities appear as blank choices
» but legitimate ambiguities may also do so

COLING 2004: XLE tutorial

XLE Ambiguity ManagementXLE Ambiguity Management

The sheep liked the fish.
How many sheep?

How many fish?

The sheep-sg liked the fish-sg.

The sheep-pl liked the fish-sg.

The sheep-sg liked the fish-pl.

The sheep-pl liked the fish-pl.

Options multiplied out

The sheep liked the fish
sg

pl

sg

pl

Options packed

Packed representation is a “free choice” system

– Encodes all dependencies without loss of information

– Common items represented, computed once

– Key to practical efficiency

COLING 2004: XLE tutorial

 … but it’s wrong
It doesn’t encode all dependencies, choices are not free.

Dependent choicesDependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc sah die Katze-nom

Das Mädchen-acc sah die Katze-acc

Das Mädchen sah die Katze
nom

acc

nom

acc
The girl saw the cat

Again, packing avoids duplication

 bad

The girl saw the cat
The cat saw the girl
 bad

Who do you want to succeed?

 I want to succeed John want intrans, succeed trans

 I want John to succeed want trans, succeed intrans

COLING 2004: XLE tutorial

Solution: Label dependent choicesSolution: Label dependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc sah die Katze-nom

Das Mädchen-acc sah die Katze-acc

 bad

The girl saw the cat
The cat saw the girl
 bad

• Label each choice with distinct Boolean variables p, q, etc.

• Record acceptable combinations as a Boolean expression "
• Each analysis corresponds to a satisfying truth-value assignment

 (free choice from the true lines of "’s truth table)

Das Mädchen sah die Katze
 p:nom

 ¬p:acc

 q:nom

 ¬q:acc

(p#¬q)
$

(¬p#q)

" =

COLING 2004: XLE tutorial

Ambiguity management:Ambiguity management:

 Shallow Shallow markup markup

! Part of speech marking as filter
I saw her duck/VB.

– accuracy of tagger (very good for English)

– can use partial tagging (verbs and nouns)

! Named entities
– <company>Goldman, Sachs & Co.</company> bought IBM.

– good for proper names and times

– hard to parse internal structure

! Fall back technique if fail
– slows parsing

– accuracy vs. speed

COLING 2004: XLE tutorial

ChosingChosing the most probable parse the most probable parse

! Applications may want one input

! Use stochastic methods to choose

– efficient (XLE English grammar: 5% of parse time)

! Need training data

– partially labelled data ok

 [NP-SBJ They] see [NP-OBJ the girl with the telescope]

Demo

Stochastic Disambiguation

COLING 2004: XLE tutorial

Applications Applications %% Beyond Parsing Beyond Parsing

! Machine translation

! Sentence condensation

! Computer Assisted Language Learning

! Knowledge representation

N best

XLE related language componentsXLE related language components

Sentence

Semantics

Transfer

Train

Property

definitions

Disambiguate

Property

weights

All

packed

f-structures

Core XLE:

Parse/Generate

Lexicons

Grammar

Morph FST

Named entities

Token FST

KB

COLING 2004: XLE tutorial

Machine TranslationMachine Translation

! The Transfer Component

! Transferring features/F-structures

– adding information

– deleting information

! Examples

COLING 2004: XLE tutorial

Basic IdeaBasic Idea

! Parse a string in the source language

! Rewrite/transfer the f-structure to that of the
target language

! Generate the target string from the
transferred f-structure

COLING 2004: XLE tutorial

Urdu to English MTUrdu to English MT

Urdu: nadya ne bola

f-structure Representation

Transfer

English f-structure

English: Nadya spoke.

Parser Generator

COLING 2004: XLE tutorial

from Urdu structure from Urdu structure ……

parse: nadya ne bola

Urdu f-structure

COLING 2004: XLE tutorial

…… to English structure to English structure

TransferUrdu f-structure

English:

Nadya spoke.

Generator

English f-structure

COLING 2004: XLE tutorial

The Transfer ComponentThe Transfer Component

! Prolog based

! Small hand-written set of transfer rules
– Obligatory and optional rules (possibly multiple output for

single input)

– Rules may add, delete, or change parts of f-structures

! Transfer operates on packed input and output

! Developer interface: Component adds new menu
features to the output windows:
– transfer this f-structure

– translate this f-structure

– reload rules

COLING 2004: XLE tutorial

Sample Transfer RulesSample Transfer Rules

verb_verb(Urdu, English) ::

 pred(X, Urdu), +vtype(X,main) ==> pred(X, English).

verb_verb(pI,drink).

verb_verb(dEkH,see).

verb_verb('A',come).

Template

Rules

%perf plus past, get perfect past

 aspect(X,perf), +tense(X,past) ==> perf(X,'+'), prog(X,'-').

%only perf, get past

 aspect(X,perf) ==> tense(X,past), perf(X,'-'), prog(X,'-').

COLING 2004: XLE tutorial

GenerationGeneration

! Use of generator as filter since transfer rules
are independent of grammar

– not constrained to preserve grammaticality

! Robustness techniques in generation:

– Insertion/deletion of features to match lexicon

– For fragmentary input from robust parser
grammatical output guaranteed for separate
fragments

COLING 2004: XLE tutorial

Adding featuresAdding features

! English to French translation:

– English nouns have no gender

– French nouns need gender

– Solution: have XLE add gender

 the French morphology will control the value

! Specify additions in configuration file (xlerc):

– set-gen-adds add "GEND"

– can add multiple features:

 set-gen-adds add "GEND CASE PCASE"

– XLE will optionally insert the feature

Note: Unconstrained additions make generation undecidable

COLING 2004: XLE tutorial

ExampleExample

[PRED 'dormir<SUBJ>'

 SUBJ [PRED 'chat'

 NUM sg

 SPEC def]

 TENSE present]

[PRED 'dormir<SUBJ>'

 SUBJ [PRED 'chat'

 NUM sg

 GEND masc

 SPEC def]

 TENSE present]

The cat sleeps. -> Le chat dort.

COLING 2004: XLE tutorial

Deleting featuresDeleting features

! French to English translation
– delete the GEND feature

! Specify deletions in xlerc
– set-gen-adds remove "GEND"

– can remove multiple features

 set-gen-adds remove "GEND CASE PCASE"

– XLE obligatorily removes the features

 no GEND feature will remain in the f-structure

– if a feature takes an f-structure value, that f-
structure is also removed

COLING 2004: XLE tutorial

Changing valuesChanging values

! If values of a feature do not match between
the input f-structure and the grammar:

– delete the feature and then add it

! Example: case assignment in translation

– set-gen-adds remove "CASE"

 set-gen-adds add "CASE"

– allows dative case in input to become accusative

 e.g., exceptional case marking verb in input
language but regular case in output language

COLING 2004: XLE tutorial

Machine TranslationMachine Translation

MT Demo

COLING 2004: XLE tutorial

Sentence condensationSentence condensation

! Goal: Shrink sentences chosen for summary

! Challenges:
1. Retain most salient information of input

2. and guarantee grammaticality of output

! Example:

 Original uncondensed sentence
 A prototype is ready for testing, and Leary hopes to set

requirements for a full system by the end of the year.

 One condensed version
 A prototype is ready for testing.

COLING 2004: XLE tutorial

Sentence Sentence CondensationCondensation

! Use:
– XLE’s transfer component

– generation

– stochastic LFG parsing tools

– ambiguity management via packed representations

! Condensation decisions made on f-structure
instead of context-free trees or strings

! Generator guarantees grammatical well-
formedness of output

! Powerful MaxEnt disambiguation model on
transfer output

COLING 2004: XLE tutorial

Source

Condensation SystemCondensation System

XLE

Parsing
Target Packed

F-structures

XLE

Generation
 Packed

Condens.Transfer

n
 b

e
s
t

Pargram
English

Condensation
rules

Log-linear
model

S
to

c
h

a
s
ti
c
 S

e
le

c
ti
o

n

Simple combination of reusable system components

COLING 2004: XLE tutorial

Sample Transfer Rules:Sample Transfer Rules:

sentence condensationsentence condensation

! Rule optionally removes a non-negative
adjunct Adj by deleting the fact that Adj is
contained within the set of adjuncts AdjSet
associated with expression X.

! Rule-traces are added automatically to record
relation of transfered f-structure to original f-
structure for stochastic disambiguation.

+adjunct(X,AdjSet), in-set(Adj,AdjSet),

 -adjunct_type(Adj,neg) ?=> del-node(Adj).

OneOne f f-structure for Original Sentence-structure for Original Sentence

COLING 2004: XLE tutorial

Packed alternatives after transfer condensationPacked alternatives after transfer condensation

COLING 2004: XLE tutorial

Selection <a:1,b:1>Selection <a:1,b:1>

COLING 2004: XLE tutorial

Selection <a:2>Selection <a:2>

COLING 2004: XLE tutorial

Generated condensed stringsGenerated condensed strings

A prototype is ready.

A prototype is ready for testing.

Leary hopes to set requirements for a full system.

A prototype is ready and Leary hopes to set requirements for a full
system.

A prototype is ready for testing and Leary hopes to set requirements
for a full system.

Leary hopes to set requirements for a full system by the end of the
year.

A prototype is ready and Leary hopes to set requirements for a full
system by the end of the year.

A prototype is ready for testing and Leary hopes to set requirements
for a full system by the end of the year.

All grammatical!

COLING 2004: XLE tutorial

Transfer Rules used in MostTransfer Rules used in Most

Probable Condensation <a:2>Probable Condensation <a:2>

! Rule-traces in order of application
– r13: Keep of-phrases (of the year)

– r161: Keep adjuncts for certain heads, specified
elsewhere (system)

– r1: Delete adjunct of first conjunct (for testing)

– r1: Delete adjunct of second conjunct (by the end
of the year)

– r2: Delete (rest of) second conjunct (Leary hopes
to set requirements for a full system),

– r22: Delete conjunction itself (and).

COLING 2004: XLE tutorial

Condensation discussionCondensation discussion

! Ranking of system variants shows close correlation

between automatic and manual evaluation.

! Stochastic selection of transfer-output crucial: 50%
reduction in error rate relative to upper bound.

! Selection of best parse for transfer-input less

important: Similar results for manual selection and
transfer from all parses.

! Compression rate around 60%: less aggressive than
human condensation, but shortest-string heuristic is
worse.

COLING 2004: XLE tutorial

Computer Assisted LanguageComputer Assisted Language

Learning (CALL) OutlineLearning (CALL) Outline

! Goals

! Method

! Augmenting the English ParGram Grammar
via OT Marks

! Generating Correct Output

COLING 2004: XLE tutorial

XLE and XLE and CALLCALL

! Goal: Use large-scale intelligent grammars to
assist in grammar checking

– identify errors in text by language learners

– provide feedback as to location and type of error

– generate back correct example

! Method: Adapt English ParGram grammar to
deal with errors in the learner corpus

COLING 2004: XLE tutorial

XLE CALL system methodXLE CALL system method

! Grammar: Introduce special UNGRAMMATICAL

feature at f-structure for feedback as to the type of
error

! Parse CALL sentence

! Generate back possible corrections

! Evaluated on developed and unseen corpus
i. accuracy of error detection

ii. value of suggestions or possible feedback

iii. range of language problems/errors covered

iv. speed of operation

COLING 2004: XLE tutorial

Adapting the English GrammarAdapting the English Grammar

! The standard ParGram English grammar was
augmented with:

– OT marks for ungrammatical constructions

– Information for feedback: Example: Mary happy.
UNGRAMMATICAL {missing-be}

top level f-structure

! Parametrization of the generator to allow for
corrections based on ungrammatical input.

COLING 2004: XLE tutorial

F-structure: Mary happy.F-structure: Mary happy.

!

COLING 2004: XLE tutorial

Example modificationsExample modifications

! Missing copula (Mary happy.)

! No subj-verb agreement (The boys leaves.)

! Missing specifier on count noun (Boy leaves.)

! Missing punctuation (Mary is happy)

! Bad adverb placement (Mary quickly leaves.)

! Non-fronted wh-words (You saw who?)

! Missing to infinitive (I want disappear.)

COLING 2004: XLE tutorial

Using OT MarksUsing OT Marks

! OT marks allow one analysis to be prefered
over another

! The marks are introduced in rules and lexical
entries
 @(OT-MARK ungrammatical)

! The parser is given a ranking of the marks

! Only the top ranked analyses appear

COLING 2004: XLE tutorial

OT Marks in the CALL grammarOT Marks in the CALL grammar

! A correct sentence triggers no marks

! A sentence with a known error triggers a
mark ungrammatical

! A sentence with an unknown error triggers a
mark fragment

! no mark < ungrammatical < fragment
– the grammar first tries for no mark

– then for a known error

– then a fragment if all else fails

COLING 2004: XLE tutorial

F-structure: Boy happy.F-structure: Boy happy.

!

!

COLING 2004: XLE tutorial

Generation of correctionsGeneration of corrections

! Remember that XLE allows the generation of
correct sentences from ungrammtical input.

! Method:

– Parse ungrammatical sentence

– Remove UNGRAMMATICAL feature for generation

– Generate from stripped down ungrammatical

f-structure

COLING 2004: XLE tutorial

Underspecified GenerationUnderspecified Generation

! XLE generation from an underspecified f-structure
(information has been removed).

! Example: generation from an f-structure without
tense/aspect information.

 John sleeps (w/o TNS-ASP)

& All tense/aspect
variations

John

 { { will be

 |was

 |is

 |{has|had} been}

 sleeping

 |{{will have|has|had}|} slept

 |sleeps

 |will sleep}
COLING 2004: XLE tutorial

CALL Generation exampleCALL Generation example

! parse "Mary happy."

 generate back:

 Mary is happy.

! parse "boy arrives."

 generate back:
 { This | That | The | A } boy arrives.

COLING 2004: XLE tutorial

CALL evaluation and conclusionsCALL evaluation and conclusions

! Preliminary Evaluation promising:

– Word 10 out of 50=20% (bad user feedback)

– XLE 29 out of 50=58% (better user feedback)

! Unseen real life student production

– Word 5 out of 11 (bad user feedback)

– XLE 6 out 11 (better user feedback)

COLING 2004: XLE tutorial

Knowledge RepresentationKnowledge Representation

! From Syntax to Semantics

! From Semantics to Knowledge
Representation

! Text Analysis

! Question/Answering

COLING 2004: XLE tutorial

Glue: From Syntax to SemanticsGlue: From Syntax to Semantics

! Grammatical structure gives basic predicate-argument relations, but lacks
additional semantic structure, such as:

– Standard logical machinery (variables, connectives, etc)

– Implicit arguments (events, causes)

– Contextual dependencies (the wire = part25)
– Non-syntactic ambiguities (quantifier & modifier scope, etc)

! Mapping systematically from language to logical form is non-trivial

! Grammatical structure gives basic predicate-argument relations, but lacks
additional semantic structure, such as:

– Standard logical machinery (variables, connectives, etc)

– Implicit arguments (events, causes)

– Contextual dependencies (the wire = part25)
– Non-syntactic ambiguities (quantifier & modifier scope, etc)

! Mapping systematically from language to logical form is non-trivial

The wire broke.
Glue

Semantics

logical
representation
of sentences

XLE
Parser

grammatical
representation
of sentences

'w. wire(w) & w=part25 &

 't. interval(t) & t<now &

 'e. break_event(e) & occurs_during(e,t) &

 object_of_change(e,w) &

 'c. cause_of_change(e,c)

PRED

SUBJ

TENSE

break<(SUBJ>

PRED wire

SPEC def

NUM sg

past

COLING 2004: XLE tutorial

From Semantics to KRFrom Semantics to KR

! Semantics is of the traditional “Every linguist seeks a unicorn” variety
– Needed to capture semantic entailment & contradiction relations
– Reflects compositional structure of sentence (leads to expressive semantic rep’ns)
– But unwieldy / intractable for practical knowledge representation & inference

! Mapping from semantics to KR
– Canonicalize alternative linguistic structures to common content structures
– Preserve semantic meanings / entailments within less expressive KRs

– Introduce some domain/ontology knowledge (wire is a XeroxMachinePart)

! Semantics is of the traditional “Every linguist seeks a unicorn” variety
– Needed to capture semantic entailment & contradiction relations
– Reflects compositional structure of sentence (leads to expressive semantic rep’ns)
– But unwieldy / intractable for practical knowledge representation & inference

! Mapping from semantics to KR
– Canonicalize alternative linguistic structures to common content structures
– Preserve semantic meanings / entailments within less expressive KRs

– Introduce some domain/ontology knowledge (wire is a XeroxMachinePart)

The wire broke.
Glue

Semantics
XLE

Parser
 Semantics

KR Map

(isa part25 cableXeroxMachinePart)

(isa break43 DamageEvent)

(isa break43 StateChangeEvent)

(ObjectOfStateChange break43 part25)

(AgentOfStateChange break43 entity47)

'w. wire(w) & w=part25 &

 't. interval(t) & t<now &

 'e. break_event(e) & occurs_during(e,t) &

 object_of_change(e,w) &

 'c. cause_of_change(e,c)

COLING 2004: XLE tutorial

Advancing Open Text Semantic AnalysisAdvancing Open Text Semantic Analysis

! Deeper, more detailed linguistic analysis
– Functional structures, not just parse trees

– Fully scoped, intensional semantic representations, not just
predicate-argument structure.

! Canonicalization into tractable KR
– Flat, contexted KR clauses reflecting intensional structure

– Map alternative linguistic realizations of the same meanings
onto common, canonical KR expressions

– Employ constrained ontological reasoning to improve
canonicalization

! Ambiguity enabled semantics and KR
– Common packing mechanisms at all levels of representation

– Avoid errors from premature disambiguation

Driving force: Entailment & Contradiction Detection (ECD)

COLING 2004: XLE tutorial

ECD and Maintaining Text DatabasesECD and Maintaining Text Databases

Tip 27057

Problem: Left cover damage

Cause: The left cover safety cable is
breaking, allowing the left cover to

pivot too far, breaking the cover.

Solution: Remove the plastic sleeve
from around the cable. Cutting the
plastic off of the cable makes the
cable more flexible, which prevents
cable breakage. Cable breakage is a
major source of damage to the left
cover.

Tip 27118

Problem: The current safety cable
used in the 5100 Document Handler
fails prematurely causing the Left
Document Handler Cover to break.

Cause: The plastic jacket made the
cable too stiff. This causes stress to
be concentrated on the cable ends,
where it eventually fails.

Solution: When the old safety cable
fails, replace it with the new one
[12K1981], which has the plastic
jacket shortened.

Maintain quality of text database by identifying areas
of redundancy and conflict between documents

Deep, canonical, ambiguity-enabled semantic processing

is needed to detect entailments & contradictions like these.

COLING 2004: XLE tutorial

common
 sense knowledge

Architecture for Document ECDArchitecture for Document ECD

Sentential
Semantics

Discourse
Semantics

logical
representation
of sentences

macro
text

structure

LFG
Parser

grammatical
representation
of sentences

Linguistic
Knowledge

Rep’n
Builder

knowledge
representation

Domain elements
Belts, cables, ..
 Repair tasks

 Manufacturing

 defects

Semantic
Lexicon

Discourse
Grammar
and Rules

Structure
Matcher

Rep’n
Knowledge
and Rules

Higher level structures

Plans
Action Sequences
Hypotheses

NL"KR rules

Gradable
 predicate
Thematic
 roles

COLING 2004: XLE tutorial

Entailment, Contradiction & QAEntailment, Contradiction & QA

! ECD is a necessary (but not sufficient) condition for
language understanding

! ECD improves with increasing world & domain knowledge
– But many EC relations derivable from purely linguistic knowledge

! QA can (conceptually) be viewed as ECD
– Answers entail or contradict declarative content of question

» Human interpreter of text snippets currently has to decide which

! Yes/No QA: a more direct application of ECD
– Automatically identify positive and negative answers to yes/no

questions, e.g.
» Is sickle cell anemia related to S-trait hemaglobin?

 YES: …..

 NO: ….

COLING 2004: XLE tutorial

XLE: Overall ConclusionsXLE: Overall Conclusions

! Grammar engineering makes deep grammars
feasible

– robustness techniques

– integration of shallow methods

! Many current applications can use shallow
grammars

! Fast, accurate, broad-coverage deep
grammars enable new applications

COLING 2004: XLE tutorial

Contact informationContact information

! Miriam Butt
miriam.butt@uni-konstanz.de

http://ling.uni-konstanz.de/pages/home/butt

! Tracy Holloway King
thking@parc.com

http://www.parc.com/thking

! Many of the publications in the bibliography are
available from our websites.

! Information about XLE:

http://www.parc.com/istl/groups/nltt/xle/default.html

COLING 2004: XLE tutorial

BibliographyBibliography

Butt, M., T.H. King, M.-E. Niño, and F. Segond. 1999. A Grammar Writer's
Cookbook. Stanford University: CSLI Publications.

Butt, Miriam and Tracy Holloway King. 2003. Grammar Writing, Testing,
and Evaluation. In A. Farghaly (ed.) Handbook for Language Engineers.
CSLI Publications. pp. 129-179.

Butt, M., M. Forst, T.H. King, and J. Kuhn. 2003. The Feature Space in
Parallel Grammar Writing. ESSLLI 2003 Workshop on Ideas and
Strategies for Multilingual Grammar Development.

Butt, M., H. Dyvik, T.H. King, H. Masuichi, and C. Rohrer. 2002. The
Parallel Grammar Project. Proceedings of COLING2002, Workshop on
Grammar Engineering and Evaluation pp. 1-7.

Butt, M., T.H. King, and J. Maxwell. 2003. Productive encoding of Urdu
complex predicates in the ParGram Project. In Proceedings of the
EACL03: Workshop on Computational Linguistics for South Asian
Languages: Expanding Synergies with Europe. pp. 9-13.

Butt, M. and T.H. King. 2003. Complex Predicates via Restriction. In
Proceedings of the LFG03 Conference. CSLI On-line Publications. pp.
92-104.

COLING 2004: XLE tutorial

Frank, A., T.H. King, J. Kuhn, and J. Maxwell. 1998. Optimality Theory Style
Constraint Ranking in Large-Scale LFG Grammars Proceedings of the
LFG98 Conference. CSLI Publications.

Kaplan, R., T.H. King, and J. Maxwell. 2002. Adapting Existing Grammars:
The XLE Experience. Proceedings of COLING2002, Workshop on
Grammar Engineering and Evaluation, pp. 29-35.

Kaplan, Ronald M. and Jürgen Wedekind. 2000. LFG generation produces
context-free languages. In Proceedings of the 18th International
Conference on Computational Linguistics (COLING2000), Saarbrücken.

Kaplan, R.M., S. Riezler, T. H. King, J. T. Maxwell III, A. Vasserman, R.
Crouch. 2004. Speed and Accuracy in Shallow and Deep Stochastic
Parsing. In Proceedings of the Human Language Technology Conference
and the 4th Annual Meeting of the North American Chapter of the
Association for Computational Linguistics (HLT-NAACL'04), Boston, MA.

Kaplan, R. M. and P. Newman. 1997. Lexical resource reconciliation in the
Xerox Linguistic Environment. In Computational environments for
grammar development and linguistic engineering, pp. 54-61. Proceedings
of a workshop sponsored by the Association for Computational Linguistics,
Madrid, Spain, July 1997.

Kaplan, R. M., K. Netter, J. Wedekind, and A. Zaenen. 1989. Translation by
structural correspondences. In Proceedings of the 4th Meeting of the
EACL, pp. 272-281. University of Manchester: European Chapter of the
Association for Computational Linguistics. Reprinted in Dalrymple et al.
(editors), Formal Issues in Lexical-Functional Grammar. CSLI, 1995.

COLING 2004: XLE tutorial

Karttunen, L. and K. R. Beesley. 2003. Finite-State Morphology. CSLI
Publications.

Kay, M. 1996. Chart Generation. Proceedings of the ACL 1996, 200-204.
Khader, R. 2003. Evaluation of an English LFG-based Grammar as Error

Checker. UMIST MSc Thesis, Manchester.
Kim, R., M. Dalrymple, R. Kaplan, T.H. King, H. Masuichi, and T. Ohkuma.

2003. Multilingual Grammar Development via Grammar Porting. ESSLLI
2003 Workshop on Ideas and Strategies for Multilingual Grammar
Development.

King, T.H. and R. Kaplan. 2003. Low-Level Mark-Up and Large-scale LFG
Grammar Processing. On-line Proceedings of the LFG03 Conference.

King, T.H., S. Dipper, A. Frank, J. Kuhn, and J. Maxwell. 2000. Ambiguity
Management in Grammar Writing. Linguistic Theory and Grammar
ImplementationWorkshop at European Summer School in Logic,
Language, and Information (ESSLLI-2000).

Masuichi, H., T. Ohkuma, H. Yoshimura and Y. Harada. 2003. Japanese
parser on the basis of the Lexical-Functional Grammar Formalism and its
Evaluation, Proceedings of The 17th Pacific Asia Conference on
Language, Information and Computation (PACLIC17), pp. 298-309.

COLING 2004: XLE tutorial

Maxwell, J. T., III and R. M. Kaplan. 1989. An overview of disjunctive constraint
satisfaction. In Proceedings of the International Workshop on Parsing
Technologies, pp. 18-27. Also published as `A Method for Disjunctive
Constraint Satisfaction', M. Tomita, editor, Current Issues in Parsing
Technology, Kluwer Academic Publishers, 1991.

Riezler, S., T.H. King, R. Kaplan, D. Crouch, J. Maxwell, and M. Johnson.
2002. Parsing the Wall Street Journal using a Lexical-Functional Grammar
and Discriminative Estimation Techniques. Proceedings of the Annual
Meeting of the Association for Computational Linguistics, University of
Pennsylvania.

Riezler, S., T.H. King, R. Crouch, and A. Zaenen. 2003. Statistical sentence
condensation using ambiguity packing and stochastic disambiguation
methods for Lexical-Functional Grammar. Proceedings of the Human
Language Technology Conference and the 3rd Meeting of the North A
merican Chapter of the Association for Computational Linguistics (HLT-
NAACL'03).

Shemtov, H. 1996. Generation of Paraphrases from Ambiguous Logical Forms.
Proceedings of COLING 1996, 919-924.

Shemtov, H. 1997. Ambiguity Management in Natural Language Generation.
PhD thesis, Stanford University.

COLING 2004: XLE tutorial

