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COLING 2004: XLE tutorial

Tutorial OutlineTutorial Outline

! What is a deep grammar and why would you want
one?

! XLE: A First Walkthrough

! Robustness techniques

! Generation

! Disambiguation

! Applications:
– Machine Translation

– Sentence Condensation

– Computer Assisted Language Learning (CALL)

– Knowledge Representation
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Applications of Language EngineeringApplications of Language Engineering
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Deep grammarsDeep grammars

! Provide detailed syntactic/semantic analyses

– HPSG (LinGO, Matrix), LFG (ParGram)

– Grammatical functions, tense, number, etc.
Mary wants to leave.

   subj(want~1,Mary~3)

   comp(want~1,leave~2)

   subj(leave~2,Mary~3)

   tense(leave~2,present)

! Usually manually constructed
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Why would you want Why would you want one?one?

! Meaning sensitive applications

– overkill for many NLP applications

! Applications which use shallow methods for
English may not be able to for "free" word
order languages

– can read many functions off of trees in English
» subj:  NP sister to VP

» obj: first NP sister to V

– need other information in German, Japanese, etc.
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Deep analysis mattersDeep analysis matters……

                if you care about the answerif you care about the answer

Example:

A delegation led by Vice President Philips, head of the chemical
     division, flew to Chicago a week after the incident.

Question:  Who flew to Chicago?

Candidate answers:

division closest noun

head next closest

V.P. Philips next

shallow but wrong

delegation     furthest away but

Subject of flew
deep and right
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Why don't people use them?Why don't people use them?

! Time consuming and expensive to write
– shallow parsers can be induced automatically from

a training set

! Brittle
– shallow parsers produce something for everything

! Ambiguous
– shallow parsers rank the outputs

! Slow
– shallow parsers are very fast (real time)

! Other gating items for applications that need
deep grammars
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Why should one pay attention now?Why should one pay attention now?

! Robustness:

– Integrated Chunk Parsers

– Bad input always results in some (possibly good) output

! Ambiguity:

– Integration of stochastic methods

– Optimality Theory used to rank/pick alternatives

! Speed: comparable to shallow parsers

! Accuracy and information content:

– far beyond the capabilities of shallow parsers.

New Generation of Large-Scale Grammars:
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XLE at PARCXLE at PARC

! Platform for Developing Large-Scale LFG
Grammars

! LFG (Lexical-Functional Grammar)
– Invented in the 1980s

(Joan Bresnan and Ronald Kaplan)

– Theoretically stable ! Solid Implementation

! XLE is implemented in C, used with emacs, tcl/tk

! XLE includes a parser, generator and transfer
component.
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Basic LFGBasic LFG

! Constituent-Structure: tree

! Functional-Structure: Attribute Value Matrix

                                      universal

NP

PRON

 they

S

VP

    V

appear

PRED 'pro'

PERS 3

NUM pl

SUBJ

TENSE pres

PRED 'appear<SUBJ>'
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Grammar componentsGrammar components

! Configuration: links components

! Annotated phrase structure rules

! Lexicon

! Templates

! Other possible components

– Finite State (FST) morphology

– disambiguation feature file
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Basic configuration fileBasic configuration file

TOY ENGLISH CONFIG (1.0)

ROOTCAT S.

FILES .

LEXENTRIES (TOY ENGLISH).

RULES (TOY ENGLISH).

TEMPLATES (TOY ENGLISH).

GOVERNABLERELATIONS SUBJ OBJ OBJ2 OBL COMP XCOMP.

SEMANTICFUNCTIONS ADJUNCT TOPIC.

NONDISTRIBUTIVES NUM PERS.

EPSILON e.

OPTIMALITYORDER

       NOGOOD.

----
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Grammar sectionsGrammar sections

! Rules, templates, lexicons

! Each has:
– version ID

– component ID

– XLE version number (1.0)

– terminated by four dashes ----

! Example
STANDARD ENGLISH   RULES   (1.0)

----
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Syntactic rulesSyntactic rules

! Annotated phrase structure rules

 Category --> Cat1: Schemata1;

                      Cat2: Schemata2;

                      Cat3: Schemata3.

  S --> NP: (^ SUBJ)=!

                  (! CASE)=NOM;

           VP: ^=!.
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Another sample ruleAnother sample rule

                                                  "indicate comments"

VP --> V: ^=!;                             "head"

           (NP: (^ OBJ)=!                "() = optionality"

                   (! CASE)=ACC)

           PP*: ! $ (^ ADJUNCT).    "$ = set"

VP consists of:

      a head verb

      an optional object

      zero or more PP adjuncts
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LexiconLexicon

! Basic form for lexical entries:
word Category1 Morphcode1 Schemata1;

         Category2 Morphcode2 Schemata2.

walk V * (^ PRED)='WALK<(^ SUBJ)>';

        N * (^ PRED) = 'A-WALK' .

girl   N * (^ PRED) = 'A-GIRL'.

kick  V * { (^ PRED)='KICK<(^ SUBJ)(^ OBJ)>'

               |(^ PRED)='KICK<(^ SUBJ)>'}.

the   D * (^ DEF)=+.
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TemplatesTemplates

! Express generalizations

– in the lexicon

– in the grammar

– within the template space

No Template

girl N * (^ PRED)='GIRL' 

            { (^ NUM)=SG 

              (^ DEF) 

             |(^ NUM)=PL}.

With Template

TEMPLATE: CN = { (^ NUM)=SG 

(^ DEF)

 |(^ NUM)=PL}. 

girl N * (^ PRED)='GIRL' @CN. 

boy N * (^ PRED)='BOY' @CN.
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Template example cont.Template example cont.

! Parameterize template to pass in values

CN(P) = (^ PRED)='P'

              { (^ NUM)=SG

              (^ DEF)

 |(^ NUM)=PL}.

! Template can call other templates

INTRANS(P) = (^ PRED)='P<(^ SUBJ)>'.

TRANS(P) = (^ PRED)='P<(^ SUBJ)(^ OBJ)>'.

OPT-TRANS(P) = { @(INTRANS P) | @(TRANS P) }.

girl N * @(CN GIRL). 

boy N * @(CN BOY). 
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Parsing a stringParsing a string

! create-parser demo-eng.lfg

! parse "the girl walks"

Walkthrough Demo
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Outline: RobustnessOutline: Robustness

! Missing vocabulary

– you can't list all the proper names in the world

! Missing constructions

– there are many constructions theoretical linguistics
rarely considers (e.g. dates, company names)

! Ungrammatical input

– real world text is not always perfect

– sometimes it is really horrendous

Dealing with brittleness
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Dealing with Missing VocabularyDealing with Missing Vocabulary

! Build vocabulary based on the input of
shallow methods

– fast

– extensive

– accurate

! Finite-state morphologies

   falls -> fall +Noun +Pl

               fall +Verb +Pres +3sg

! Build lexical entry on-the-fly from the
morphological information

COLING 2004: XLE tutorial

Building lexical entriesBuilding lexical entries

! Lexical entries
-unknown  N          XLE @(COMMON-NOUN %stem).

+Noun       N-SFX  XLE @(PERS 3).

+Pl            N-NUM  XLE @(NUM pl).

! Rule
        Noun -> N    N-SFX    N-NUM.

! Structure
    [ PRED  'fall'

      NTYPE common

      PERS   3

      NUM    pl ]
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Guessing wordsGuessing words

! Use FST guesser if the morphology doesn't
know the word

– Capitalized words can be proper nouns
Saakashvili -> Saakashvili +Noun +Proper +Guessed

– ed words can be past tense verbs or adjectives
fumped -> fump +Verb +Past +Guessed

                  fumped +Adj +Deverbal +Guessed
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Using the lexiconsUsing the lexicons

! Rank the lexical lookup

1. overt entry in lexicon

2. entry built from information from morphology

3. entry built from information from guesser
» quality will depend on language type

! Use the most reliable information

! Fall back only as necessary
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Missing constructionsMissing constructions

! Even large hand-written grammars are not
complete

– new constructions, especially with new corpora

– unusual constructions

! Generally longer sentences fail

! Build up as much as you can; stitch together
the pieces

Solution: Fragment and Chunk Parsing
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Grammar engineering approachGrammar engineering approach

! First try to get a complete parse

! If fail, build up chunks that get complete
parses

! Have a fall-back for things without even
chunk parses

! Link these chunks and fall-backs together in a
single structure
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Fragment Chunks: Sample outputFragment Chunks: Sample output

! the the dog appears.

! Split into:

– "token" the

– sentence "the dog appears"

– ignore the period

COLING 2004: XLE tutorial

F-structureF-structure
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Ungrammatical inputUngrammatical input

! Real world text contains ungrammatical input

– typos

– run ons

– cut and paste errors

! Deep grammars tend to only cover
grammatical input

! Two strategies

– robustness techniques: guesser/fragments

– disprefered rules for ungrammatical structures
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Harnessing Optimality TheoryHarnessing Optimality Theory

! Optimality Theory (OT) allows the statement
of preferences and dispreferences.

! In XLE, OT-Marks (annotations) can be
added to rules or lexical entries to either
prefer or disprefer a certain structure/item.

+Mark  =  preference

  Mark  =  dispreference

! The strength of (dis)preference can be set
variably.
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OT RankingOT Ranking

! Order of Marks:  Mark3 is preferred to Mark4

OPTIMALITYORDER Mark4 Mark3 +Mark2 +Mark1.

! NOGOOD Mark:  Marks to the left are always bad.
Useful for parametrizing grammar with respect to certain
domains

OPTIMALITYORDER Mark4 NOGOOD Mark3 +Mark2

+Mark1.

! STOPPOINT Mark: slowly increases the search space of
the grammar if no good solution can be found (multipass
grammar)

OPTIMALITYORDER Mark4 NOGOOD Mark3

STOPPOINT Mark2 STOPPOINT Mark1.
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Rule Annotation (O-Projection)Rule Annotation (O-Projection)

! Common errors can be coded in the rules

mismatched subject-verb agreement

      Verb3Sg = { (^ SUBJ PERS) = 3

                          (^ SUBJ  NUM) = sg

                         | @(OTMARK BadVAgr) }

! Disprefer parses of ungrammatical structure

– tools for grammar writer to rank rules

– two+ pass system
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Robustness via Optimality MarksRobustness via Optimality Marks

Demo

Ungrammatical Sentences

The girls walks.

The the dog appears.

english.lfg (Tokenizer, FST Morphology)
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Robustness SummaryRobustness Summary

! Integrate shallow methods

– morphologies (finite state)

– guessers

! Fall back techniques

– fragment grammar (chunks)

– disprefered rules (OT)
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Generation OutlineGeneration Outline

! Why generate?

! Generation as the reverse of parsing

! Constraining generation (OT)

! The generator as a debugging tool

! Generation from underspecified structures
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Why generate?Why generate?

! Machine translation

Lang1 string -> Lang1 fstr -> Lang2 fstr -> Lang2 string

! Sentence condensation

Long string -> fstr -> smaller fstr -> new string

! Question answering

! Grammar debugging
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Generation: Generation: justjust reverse the parser reverse the parser

! XLE uses the same basic grammar to parse
and generate

– Parsing: string to analysis

– Generation: analysis to string

! Input to Generator is the f-structure analysis

! Formal Properties of LFG Generation:

– Generation produces Context Free Languages

– LFG generation is a well-understood formal system
(decidability, closure). 
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Generation: justGeneration: just reverse the parser reverse the parser

! Advantages

– maintainability

– write rules and lexicons once

! But

– special generation tokenizer

– different OT ranking
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Restricting GenerationRestricting Generation

! Do not always want to generate all the possibilities
that can be parsed

! Put in special OT marks for generation to block or
prefer certain strings
– fix up bad subject-verb agreement

– only allow certain adverb placements

– control punctuation options

! GENOPTIMALITYORDER
– special ordering for OT generation marks that is kept separate

from the parsing marks

– serves to parametrize the grammar (parsing vs. generation)
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Generation Generation tokenizertokenizer

! White space

– Parsing: multiple white space becomes a single
TB

John      appears.  -> John TB appears TB . TB

– Generation: single TB becomes a single space

                      (or nothing)
John TB appears TB . TB -> John appears.

                                              *John      appears   .
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Generation Generation tokenizertokenizer

! Capitalization

– Parsing: optionally decap initially
They came -> they came

Mary came -> Mary came

– Generation: always capitalize initially
they came -> They came

                       *they came

! May regularize other options

– quotes, dashes, etc.
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Generation morphologyGeneration morphology

! Suppress variant forms

– Parse both favor and favour

– Generate only one
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MorphconfigMorphconfig for parsing & generation for parsing & generation

STANDARD ENGLISH MOPRHOLOGY (1.0)

TOKENIZE:

P!eng.tok.parse.fst G!eng.tok.gen.fst

ANALYZE:

eng.infl-morph.fst G!amerbritfilter.fst

G!amergen.fst

----
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Reversing the parsing grammarReversing the parsing grammar

! The parsing grammar rules can be used
directly as a generator

! Adapt the grammar rule set with a special OT
ranking GENOPTIMALITYORDER

! Why do this?

– parse ungrammatical input

– have too many options: one f-structure
corresponds to many surface strings
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Ungrammatical inputUngrammatical input

! Linguistically ungrammatical

– They walks.

– They ate banana.

! Stylistically ungrammatical

– No ending punctuation: They appear

– Superfluous commas: John, and Mary appear.

– Shallow markup:  [NP John and Mary] appear.
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Too many optionsToo many options

! All the generated options can be linguistically
valid, but too many for applications

! Occurs when more than one string has the
same, legitimate f-structure

! PP placement:

– In the morning I left.     I left in the morning.
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Using the Gen OT rankingUsing the Gen OT ranking

! Generally much simpler than in the parsing
direction

– Usually only use standard marks and NOGOOD

no STOPPOINT

– Can have a few marks that are shared by several
constructions

            one or two for disprefered

            one or two for prefered
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Example: Comma in Example: Comma in coordcoord

COORD(_CAT) = _CAT: @CONJUNCT;

                             (COMMA: @(OTMARK GenBadPunct))

                             CONJ

                             _CAT: @CONJUNCT.

GENOPTIMALITYORDER GenBadPunct NOGOOD.

parse:  They appear, and disappear.

generate: without OT: They appear(,) and disappear.

                  with OT: They appear and disappear.
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Example: Prefer initial PPExample: Prefer initial PP

S --> (PP: @ADJUNCT @(OT-MARK GenGood))

         NP: @SUBJ;

         VP.

VP --> V

           (NP: @OBJ)

           (PP: @ADJUNCT).

GENOPTIMALITYORDER NOGOOD +GenGood.

with OT: In the morning they appear.

parse: they appear in the morning.

generate: without OT: In the morning they appear.

                                    They appear in the morning.
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Generation commandsGeneration commands

! XLE command line:
– regenerate "They appear."

– generate-from-file my-file.pl

– (regenerate-from-directory, regenerate-testfile)

! F-structure window:

– commands: generate from this fs

! Debugging commands

– regenerate-morphemes
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Debugging the generatorDebugging the generator

! When generating from an f-structure produced
by the same grammar, XLE should always
generate

! Unless:

– OT marks block the only possible string

– something is wrong with the tokenizer/morphology

       regenerate-morphemes: if this gets a string

            the tokenizer/morphology is not the problem

! XLE has generation robustness features

– seeing what is added/removed helps with debugging
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Underspecified InputUnderspecified Input

! F-structures provided by applications are not
perfect
– may be missing features

– may have extra features

– may simply not match the grammar coverage

! Missing and extra features are often
systematic
– specify in XLE which features can be added and

deleted

! Not matching the grammar is a more serious
problem
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Creating ParadigmsCreating Paradigms

! Deleting and adding features within one
grammar can produce paradigms

! Specifiers:
– set-gen-adds remove "SPEC"

   set-gen-adds add "SPEC DET DEMON"

– regenerate "NP: boys"

{ the | those | these |   } boys

etc.
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Generation for DebuggingGeneration for Debugging

! Checking for grammar and lexicon errors

– create-generator english.lfg

– reports ill-formed rules, templates, feature
declarations, lexical entries

! Checking for ill-formed sentences that can be
parsed

– parse a sentence

– see if all the results are legitimate strings

– regenerate “they appear.”

COLING 2004: XLE tutorial

Regeneration exampleRegeneration example

% regenerate "In the park they often see the boy with
the telescope."

parsing {In the park they often see the boy with the
telescope.}

4 solutions, 0.39 CPU seconds, 178 subtrees unified

{They see the boy in the park|In the park they see the
boy} often with the telescope.

regeneration took 0.87 CPU seconds.
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Regenerate Regenerate testfiletestfile

! regenerate-testfile

! produces new file: testfile.regen

– sentences with parses and generated strings

– lists sentences with no strings

– if have no Gen OT marks, everything should
generate back to itself
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Summary:Summary:

Generation and ReversibilityGeneration and Reversibility

! XLE parses and generates on the same
grammar

– faster development time

– easier maintenance

! Minor differences controlled by:

– OT marks

– FST tokenizers

Demo

Generator
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Ambiguity OutlineAmbiguity Outline

! Sources of Ambiguity:
– Alternative c-structure rules

– Disjunctions in f-structure description

– Lexical categories

! XLE’s display/computation of ambiguity
– Packed representations

– Dependent choices

! Dealing with ambiguity
– Recognize legitimate ambiguity

– OT marks for preferences

– Shallow Markup/Tagging

– Stochastic disambiguation
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AmbiguityAmbiguity

! Deep grammars are massively ambiguous

! Use packing to parse and manipulate the
ambiguities efficiently

! Trim early with shallow markup

– fewer parses to choose from

– faster parse time

! Choose most probable parse for applications
that need a single input
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Syntactic AmbiguitySyntactic Ambiguity

! Lexical

– part of speech

– subcategorization frames

! Syntactic

– attachments

– coordination

! Implemented system highlights interactions
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Lexical Ambiguity: POSLexical Ambiguity: POS

! verb-noun
I saw her duck.

    I saw [NP her duck].

    I saw [NP her] [VP duck].

! noun-adjective
the [N/A mean] rule

   that child is [A mean].

   he calculated the [N mean].

COLING 2004: XLE tutorial

Morphology and POS ambiguityMorphology and POS ambiguity

! English has impoverished morphology and
hence extreme POS ambiguity

– leaves: leave +Verb +Pres +3sg

                leaf +Noun +Pl

                leave +Noun +Pl

– will: +Noun +Sg

          +Aux

          +Verb +base

! Even languages with extensive morphology
have ambiguities
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Lexical ambiguity: Lexical ambiguity: SubcatSubcat frames frames

! Words often have more than one
subcategorization frame

– transitive/intransitive

   I broke it./It broke.

– intransitive/oblique

   He went./He went to London.

– transitive/transitive with infinitive

   I want it./I want it to leave.
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SubcatSubcat-Rule interactions-Rule interactions

! OBL vs. ADJUNCT with intransitive/oblique

– He went to London.

   [ PRED ‘go<(^ SUBJ)(^ OBL)>’

     SUBJ [PRED ‘he’]

     OBL   [PRED ‘to<(^ OBJ)>’

                 OBJ   [ PRED ‘London’]]]

 [ PRED ‘go<(^ SUBJ)>’

     SUBJ [PRED ‘he’]

     ADJUNCT  { [PRED ‘to<(^ OBJ)>’

                           OBJ   [ PRED ‘London’]]}]
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OBL-ADJUNCT cont.OBL-ADJUNCT cont.

! Passive by phrase
– It was eaten by the boys.

   [ PRED    ‘eat<(^ OBL-AG)(^ SUBJ)>’

     SUBJ     [PRED ‘it’]

     OBL-AG [PRED ‘by<(^ OBJ)>’

                     OBJ    [PRED ‘boy’]]]

– It was eaten by the window.

    [ PRED      ‘eat<NULL(^ SUBJ)>’

     SUBJ        [PRED ‘it’]

     ADJUNCT { [PRED ‘by<(^ OBJ)>’

                          OBJ    [PRED ‘boy’]]}]
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OBJ-TH and Noun-Noun compoundsOBJ-TH and Noun-Noun compounds

! Many OBJ-TH verbs are also transitive

– I took the cake.  I took Mary the cake.

! The grammar needs a rule for noun-noun
compounds

– the tractor trailer, a grammar rule

! These can interact

– I took the grammar rules

– I took [NP the grammar rules]

– I took [NP the grammar] [NP rules]
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Syntactic AmbiguitiesSyntactic Ambiguities

! Even without lexical ambiguity, there is
legitimate syntactic ambiguity

– PP attachment

– Coordination

! Want to:

– constrain these to legitimate cases

– make sure they are processed efficiently
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PP AttachmentPP Attachment

! PP adjuncts can attach to VPs and NPs

! Strings of PPs in the VP are ambiguous

– I see the girl with the telescope.

    I see [the girl with the telescope].

    I see [the girl] [with the telescope].

! This ambiguity is reflected in:

– the c-structure (constituency)

– the f-structure (ADJUNCT attachment)



COLING 2004: XLE tutorial

PP attachment cont.PP attachment cont.

! This ambiguity multiplies with more PPs

– I saw the girl with the telescope

– I saw the girl with the telescope in the garden

– I saw the girl with the telescope in the garden

on the lawn

! The syntax has no way to determine the
attachment, even if humans can.
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Ambiguity in coordinationAmbiguity in coordination

! Vacuous ambiguity of non-branching trees

– this can be avoided

! Legitimate ambiguity

– old men and women

   old [N men and women]

   [NP old men ] and [NP women ]

– I turned and pushed the cart

   I [V turned and pushed ] the cart

   I [VP turned ] and [VP pushed the cart ]
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Grammar Engineering and ambiguityGrammar Engineering and ambiguity

! Large-scale grammars will have lexical and
syntactic ambiguities

! With real data they will interact resulting in
many parses

– these parses are legitimate

– they are not intuitive to humans

! XLE provides tools to manage ambiguity

– grammar writer interfaces

– computation
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XLE displayXLE display

! Four windows

– c-structure (top left)

– f-structure (bottom left)

– packed f-structure (top right)

– choice space (bottom right)

! C-structure and f-structure “next” buttons

! Other two windows are packed
representations of all the parses

– clicking on a choice will display that choice in the
left windows
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ExampleExample

! I see the girl in the garden

! PP attachment ambiguity

– both ADJUNCTS

– difference in ADJUNCT-TYPE
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Packed F-structure and Choice spacePacked F-structure and Choice space
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Sorting through the analysesSorting through the analyses

! “Next” button on c-structure and then f-
structure windows
– impractical with many choices

– independent vs. interacting ambiguities

– hard to detect spurious ambiguity

! The packed representations show all the
analyses at once
– (in)dependence more visible

– click on choice to view

– spurious ambiguities appear as blank choices
» but legitimate ambiguities may also do so
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XLE Ambiguity ManagementXLE Ambiguity Management

The sheep liked the fish.
How many sheep?

How many fish?

The sheep-sg liked the fish-sg.

The sheep-pl liked the fish-sg.

The sheep-sg liked the fish-pl.

The sheep-pl liked the fish-pl.

Options multiplied out

The sheep          liked the fish 
sg

pl

sg

pl

Options packed

Packed representation is a “free choice” system

– Encodes all dependencies without loss of information

– Common items represented, computed once

– Key to practical efficiency



COLING 2004: XLE tutorial

                         … but it’s wrong
It doesn’t encode all dependencies, choices are not free. 

Dependent choicesDependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc  sah die Katze-nom

Das Mädchen-acc  sah die Katze-acc

Das Mädchen             sah  die Katze
nom

acc

nom

acc
The girl                       saw  the cat

Again, packing avoids duplication

         bad

The girl saw the cat
The cat saw the girl
         bad

Who do you want to succeed?

      I want to succeed John want intrans, succeed trans

      I want John to succeed want trans, succeed intrans
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Solution:  Label dependent choicesSolution:  Label dependent choices

Das Mädchen-nom sah die Katze-nom

Das Mädchen-nom sah die Katze-acc

Das Mädchen-acc  sah die Katze-nom

Das Mädchen-acc  sah die Katze-acc

         bad

The girl saw the cat
The cat saw the girl
         bad

• Label each choice with distinct Boolean variables p, q, etc.

• Record acceptable combinations as a Boolean expression  "
• Each analysis corresponds to a satisfying truth-value assignment

         (free choice from the true lines of "’s truth table)

Das Mädchen                    sah die Katze
       p:nom

 ¬p:acc  

     q:nom

 ¬q:acc  

(p#¬q)
$

(¬p#q)

" =
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Ambiguity management:Ambiguity management:

                             Shallow                             Shallow markup markup

! Part of speech marking as filter
I saw her duck/VB.

– accuracy of tagger (very good for English)

– can use partial tagging (verbs and nouns)

! Named entities
– <company>Goldman, Sachs & Co.</company> bought IBM.

– good for proper names and times

– hard to parse internal structure

! Fall back technique if fail
– slows parsing

– accuracy vs. speed
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ChosingChosing the most probable parse the most probable parse

! Applications may want one input

! Use stochastic methods to choose

– efficient (XLE English grammar: 5% of parse time)

! Need training data

– partially labelled data ok

   [NP-SBJ They] see [NP-OBJ the girl with the telescope]

Demo

Stochastic Disambiguation
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Applications Applications %% Beyond Parsing Beyond Parsing

! Machine translation

! Sentence condensation

! Computer Assisted Language Learning

! Knowledge representation

N best

XLE related language componentsXLE related language components

Sentence

Semantics

Transfer

Train

Property

definitions

Disambiguate

Property

weights

All

packed

f-structures

Core XLE:

Parse/Generate

Lexicons

Grammar

Morph FST

Named entities

Token FST

KB
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Machine TranslationMachine Translation

! The Transfer Component

! Transferring features/F-structures

– adding information

– deleting information

! Examples
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Basic IdeaBasic Idea

! Parse a string in the source language

! Rewrite/transfer the f-structure to that of the
target language

! Generate the target string from the
transferred f-structure



COLING 2004: XLE tutorial

Urdu to English MTUrdu to English MT

Urdu: nadya ne bola

f-structure Representation

Transfer

English f-structure

English: Nadya spoke.

Parser Generator
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from Urdu structure from Urdu structure ……

parse: nadya ne bola

Urdu f-structure
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…… to English structure to English structure

TransferUrdu f-structure

English:

Nadya spoke.

Generator

English f-structure
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The Transfer ComponentThe Transfer Component

! Prolog based

! Small hand-written set of transfer rules
– Obligatory and optional rules (possibly multiple output for

single input)

– Rules may add, delete, or change parts of f-structures

! Transfer operates on packed input and output

! Developer interface: Component adds new menu
features to the output windows:
– transfer this f-structure

– translate this f-structure

– reload rules
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Sample Transfer RulesSample Transfer Rules

verb_verb(Urdu, English) ::

   pred(X, Urdu), +vtype(X,main) ==>  pred(X, English).

verb_verb(pI,drink).

verb_verb(dEkH,see).

verb_verb('A',come).

Template

Rules

%perf plus past, get perfect past

   aspect(X,perf), +tense(X,past) ==>  perf(X,'+'), prog(X,'-').

%only perf, get past

   aspect(X,perf) ==> tense(X,past), perf(X,'-'), prog(X,'-').
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GenerationGeneration

! Use of generator as filter since transfer rules
are independent of grammar

– not constrained to preserve grammaticality

! Robustness techniques in generation:

– Insertion/deletion of features to match lexicon

– For fragmentary input from robust parser
grammatical output guaranteed for separate
fragments
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Adding featuresAdding features

! English to French translation:

– English nouns have no gender

– French nouns need gender

– Solution: have XLE add gender

             the French morphology will control the value

! Specify additions in configuration file (xlerc):

– set-gen-adds add "GEND"

– can add multiple features:

        set-gen-adds add "GEND CASE PCASE"

– XLE will optionally insert the feature

Note:  Unconstrained additions make  generation undecidable
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ExampleExample

[ PRED 'dormir<SUBJ>'

  SUBJ  [ PRED 'chat'

               NUM   sg

               SPEC  def ]

   TENSE present ]

[ PRED 'dormir<SUBJ>'

  SUBJ  [ PRED 'chat'

               NUM   sg

               GEND masc

               SPEC  def ]

   TENSE present ]

The cat sleeps. -> Le chat dort.
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Deleting featuresDeleting features

! French to English translation
– delete the GEND feature

! Specify deletions in xlerc
– set-gen-adds remove "GEND"

– can remove multiple features

         set-gen-adds remove "GEND CASE PCASE"

– XLE obligatorily removes the features

   no GEND feature will remain in the f-structure

– if a feature takes an f-structure value, that f-
structure is also removed
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Changing valuesChanging values

! If values of a feature do not match between
the input f-structure and the grammar:

– delete the feature and then add it

! Example: case assignment in translation

– set-gen-adds remove "CASE"

   set-gen-adds add "CASE"

– allows dative case in input to become accusative

    e.g., exceptional case marking verb in input
language but regular case in output language
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Machine TranslationMachine Translation

MT Demo
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Sentence condensationSentence condensation

! Goal:  Shrink sentences chosen for summary

! Challenges:
1. Retain most salient information of input

2. and guarantee grammaticality of output

! Example:

        Original uncondensed sentence
       A prototype is ready for testing, and Leary hopes to set

requirements for a full system by the end of the year.

        One condensed version
 A prototype is ready for testing.
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Sentence Sentence CondensationCondensation

! Use:
– XLE’s transfer component

– generation

– stochastic LFG parsing tools

– ambiguity management via packed representations

! Condensation decisions made on f-structure 
instead of context-free trees or strings

! Generator guarantees grammatical well-
formedness of output

! Powerful MaxEnt disambiguation model on 
transfer output
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Source

Condensation SystemCondensation System

XLE

Parsing
Target Packed 

F-structures

XLE

Generation
 Packed 

Condens.Transfer

n
 b

e
s
t

Pargram
English

Condensation
rules

Log-linear
model

S
to

c
h

a
s
ti
c
 S

e
le

c
ti
o

n

Simple combination of reusable system components
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Sample Transfer Rules:Sample Transfer Rules:

sentence condensationsentence condensation

! Rule optionally removes a non-negative
adjunct Adj by deleting the fact that Adj is
contained within the set of adjuncts AdjSet
associated with expression X.

! Rule-traces are added automatically to record
relation of transfered f-structure to original f-
structure for stochastic disambiguation.

+adjunct(X,AdjSet), in-set(Adj,AdjSet), 

   -adjunct_type(Adj,neg) ?=> del-node(Adj).

OneOne f f-structure for Original Sentence-structure for Original Sentence
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Packed alternatives after transfer condensationPacked alternatives after transfer condensation
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Selection <a:1,b:1>Selection <a:1,b:1>

COLING 2004: XLE tutorial

Selection <a:2>Selection <a:2>
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Generated condensed stringsGenerated condensed strings

A prototype is ready.

A prototype is ready for testing.

Leary hopes to set requirements for a full system.

A prototype is ready and Leary hopes to set requirements for a full
system.

A prototype is ready for testing and Leary hopes to set requirements
for a full system.

Leary hopes to set requirements for a full system by the end of the
year.

A prototype is ready and Leary hopes to set requirements for a full
system by the end of the year.

A prototype is ready for testing and Leary hopes to set requirements
for a full system by the end of the year.

All grammatical!
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Transfer Rules used in MostTransfer Rules used in Most

Probable Condensation <a:2>Probable Condensation <a:2>

! Rule-traces in order of application
– r13: Keep of-phrases (of the year)

– r161: Keep adjuncts for certain heads, specified
elsewhere (system)

– r1: Delete adjunct of first conjunct (for testing)

– r1: Delete adjunct of second conjunct (by the end
of the year)

– r2: Delete (rest of) second conjunct (Leary hopes
to set requirements for a full system),

– r22: Delete conjunction itself (and).
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Condensation discussionCondensation discussion

! Ranking of system variants shows close correlation

between automatic and manual evaluation.

! Stochastic selection of transfer-output crucial: 50%
reduction in error rate relative to upper bound.

! Selection of best parse for transfer-input less

important: Similar results for manual selection and
transfer from all parses.

! Compression rate around 60%: less aggressive than
human condensation, but shortest-string heuristic is
worse.
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Computer Assisted LanguageComputer Assisted Language

Learning (CALL) OutlineLearning (CALL) Outline

! Goals

! Method

! Augmenting the English ParGram Grammar
via OT Marks

! Generating Correct Output
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XLE and XLE and CALLCALL

! Goal: Use large-scale intelligent grammars to
assist in grammar checking

– identify errors in text by language learners

– provide feedback as to location and type of error

– generate back correct example

! Method: Adapt English ParGram grammar to
deal with errors in the learner corpus
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XLE CALL system methodXLE CALL system method

! Grammar: Introduce special UNGRAMMATICAL

feature at f-structure for feedback as to the type of
error

! Parse CALL sentence

! Generate back possible corrections

! Evaluated on developed and unseen corpus
i.  accuracy of error detection

ii. value of suggestions or possible feedback

iii. range of language problems/errors covered

iv. speed of operation
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Adapting the English GrammarAdapting the English Grammar

! The standard ParGram English grammar was
augmented with:

– OT marks for ungrammatical constructions

– Information for feedback: Example: Mary happy.
UNGRAMMATICAL {missing-be}

top level f-structure

! Parametrization of the generator to allow for
corrections based on ungrammatical input.
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F-structure: Mary happy.F-structure: Mary happy.

!
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Example modificationsExample modifications

! Missing copula (Mary happy.)

! No subj-verb agreement (The boys leaves.)

! Missing specifier on count noun (Boy leaves.)

! Missing punctuation (Mary is happy)

! Bad adverb placement (Mary quickly leaves.)

! Non-fronted wh-words (You saw who?)

! Missing to infinitive (I want disappear.)
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Using OT MarksUsing OT Marks

! OT marks allow one analysis to be prefered
over another

! The marks are introduced in rules and lexical
entries
         @(OT-MARK ungrammatical)

! The parser is given a ranking of the marks

! Only the top ranked analyses appear
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OT Marks in the CALL grammarOT Marks in the CALL grammar

! A correct sentence triggers no marks

! A sentence with a known error triggers a
mark ungrammatical

! A sentence with an unknown error triggers a
mark fragment

! no mark < ungrammatical < fragment
– the grammar first tries for no mark

– then for a known error

– then a fragment if all else fails
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F-structure: Boy happy.F-structure: Boy happy.

!

!
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Generation of correctionsGeneration of corrections

! Remember that XLE allows the generation of
correct sentences from ungrammtical input.

! Method:

– Parse ungrammatical sentence

– Remove UNGRAMMATICAL feature for generation

– Generate from stripped down ungrammatical

f-structure



COLING 2004: XLE tutorial

Underspecified GenerationUnderspecified Generation

! XLE generation from an underspecified f-structure
(information has been removed).

! Example: generation from an f-structure without
tense/aspect information.

 John sleeps (w/o TNS-ASP)

& All tense/aspect 
variations

John

  {   { will be

       |was

       |is

       |{has|had} been} 

    sleeping

   |{{will have|has|had}|} slept

   |sleeps

   |will sleep}
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CALL Generation exampleCALL Generation example

! parse "Mary happy."

   generate back:

         Mary is happy.

! parse "boy arrives."

    generate back:
    { This | That | The | A } boy arrives.
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CALL evaluation and conclusionsCALL evaluation and conclusions

! Preliminary Evaluation promising:

–  Word 10 out of 50=20% (bad user feedback)

–  XLE 29 out of 50=58% (better user feedback)

! Unseen real life student production

–  Word 5 out of 11 (bad user feedback)

–  XLE 6 out 11 (better user feedback)
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Knowledge RepresentationKnowledge Representation

! From Syntax to Semantics

! From Semantics to Knowledge
Representation

! Text Analysis

! Question/Answering
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Glue:  From Syntax to SemanticsGlue:  From Syntax to Semantics

! Grammatical structure gives basic predicate-argument relations, but lacks
additional semantic structure, such as:

– Standard logical machinery (variables, connectives, etc)

– Implicit arguments (events, causes)

– Contextual dependencies                 (the wire = part25)
– Non-syntactic ambiguities                    (quantifier & modifier scope, etc)

! Mapping systematically from language to logical form is non-trivial

! Grammatical structure gives basic predicate-argument relations, but lacks
additional semantic structure, such as:

– Standard logical machinery (variables, connectives, etc)

– Implicit arguments (events, causes)

– Contextual dependencies                 (the wire = part25)
– Non-syntactic ambiguities                    (quantifier & modifier scope, etc)

! Mapping systematically from language to logical form is non-trivial

The wire broke.
Glue

Semantics

logical
representation
of sentences

XLE
Parser

grammatical
representation
of sentences

'w. wire(w) & w=part25 & 

       't. interval(t) & t<now &

            'e. break_event(e) & occurs_during(e,t) &

                  object_of_change(e,w) & 

                  'c. cause_of_change(e,c)

PRED

SUBJ

TENSE

break<(SUBJ>

PRED   wire

SPEC   def

NUM    sg

past
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From Semantics to KRFrom Semantics to KR

! Semantics is of the traditional “Every linguist seeks a unicorn” variety
– Needed to capture semantic entailment & contradiction relations
– Reflects compositional structure of sentence       (leads to expressive semantic rep’ns)
– But unwieldy / intractable for practical knowledge representation & inference

!  Mapping from semantics to KR
– Canonicalize alternative linguistic structures to common content structures
– Preserve semantic meanings / entailments within less expressive KRs

– Introduce some domain/ontology knowledge (wire is a XeroxMachinePart)

! Semantics is of the traditional “Every linguist seeks a unicorn” variety
– Needed to capture semantic entailment & contradiction relations
– Reflects compositional structure of sentence       (leads to expressive semantic rep’ns)
– But unwieldy / intractable for practical knowledge representation & inference

!  Mapping from semantics to KR
– Canonicalize alternative linguistic structures to common content structures
– Preserve semantic meanings / entailments within less expressive KRs

– Introduce some domain/ontology knowledge (wire is a XeroxMachinePart)

The wire broke.
Glue

Semantics
XLE

Parser
 Semantics

KR Map

(isa  part25 cableXeroxMachinePart) 

(isa  break43 DamageEvent)

(isa  break43 StateChangeEvent)

(ObjectOfStateChange break43 part25) 

(AgentOfStateChange break43 entity47)

'w. wire(w) & w=part25 & 

       't. interval(t) & t<now &

            'e. break_event(e) & occurs_during(e,t) &

                  object_of_change(e,w) & 

                  'c. cause_of_change(e,c)
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Advancing Open Text Semantic AnalysisAdvancing Open Text Semantic Analysis

! Deeper, more detailed linguistic analysis
– Functional structures, not just parse trees

– Fully scoped, intensional semantic representations, not just
predicate-argument structure.

! Canonicalization into tractable KR
– Flat, contexted KR clauses reflecting intensional structure

– Map alternative linguistic realizations of the same meanings
onto common, canonical KR expressions

– Employ constrained ontological reasoning to improve
canonicalization

! Ambiguity enabled semantics and KR
– Common packing mechanisms at all levels of representation

– Avoid errors from premature disambiguation

Driving force: Entailment & Contradiction Detection (ECD)
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ECD and Maintaining Text DatabasesECD and Maintaining Text Databases

Tip 27057

Problem: Left cover damage

Cause: The left cover safety cable is
breaking, allowing the left cover to

pivot too far, breaking the cover.

Solution: Remove the plastic sleeve
from around the cable.  Cutting the
plastic off of the cable makes the
cable more flexible, which prevents
cable breakage.  Cable breakage is a
major source of damage to the left
cover.

Tip 27118

Problem: The current safety cable
used in the 5100 Document Handler
fails prematurely causing the Left
Document Handler Cover to break.

Cause: The plastic jacket made the
cable too stiff.  This causes stress to
be concentrated on the cable ends,
where it eventually fails.

Solution: When the old safety cable
fails, replace it with the new one
[12K1981], which has the plastic
jacket shortened.

Maintain quality of text database by identifying areas
of redundancy and conflict between documents

Deep, canonical, ambiguity-enabled semantic processing 

is needed to detect entailments & contradictions like these.
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common
 sense knowledge

Architecture for Document ECDArchitecture for Document ECD

Sentential
Semantics

Discourse
Semantics

logical
representation
of sentences

macro
text

structure

LFG
Parser

grammatical
representation
of sentences

Linguistic
Knowledge

Rep’n
Builder

knowledge
representation

Domain elements
Belts, cables, ..
 Repair tasks

 Manufacturing

    defects  

Semantic
Lexicon

Discourse
Grammar
and Rules

Structure
Matcher

Rep’n
Knowledge
and Rules

Higher level structures

Plans
Action Sequences
Hypotheses

NL"KR rules

Gradable
 predicate
Thematic
  roles
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Entailment, Contradiction & QAEntailment, Contradiction & QA

! ECD is a necessary (but not sufficient) condition for
language understanding

! ECD improves with increasing world & domain knowledge
– But many EC relations derivable from purely linguistic knowledge

! QA can (conceptually) be viewed as ECD
– Answers entail or contradict declarative content of question

» Human interpreter of text snippets currently has to decide which

! Yes/No QA: a more direct application of ECD
– Automatically identify positive and negative answers to yes/no

questions, e.g.
» Is sickle cell anemia related to S-trait hemaglobin?

      YES: …..

      NO: ….
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XLE: Overall ConclusionsXLE: Overall Conclusions

! Grammar engineering makes deep grammars
feasible

– robustness techniques

– integration of shallow methods

! Many current applications can use shallow
grammars

! Fast, accurate, broad-coverage deep
grammars enable new applications
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Contact informationContact information

! Miriam Butt
miriam.butt@uni-konstanz.de

http://ling.uni-konstanz.de/pages/home/butt

! Tracy Holloway King
thking@parc.com

http://www.parc.com/thking

! Many of the publications in the bibliography are
available from our websites.

! Information about XLE:

http://www.parc.com/istl/groups/nltt/xle/default.html
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