Text Data Mining – auf Grundlage von Karine Megerdoomian (Handbook for Language Engineers)

Seminar-Vortrag im Rahmen der Computerlinguistik Ausgearbeitet von **Daniel Gruber** (Juni 2004)

Corpus

- "A corpus is a collection of text or speech material that has been brought together according to be a certain set of predetermined criteria."
 - Testing hypotheses about natural lang.
 - Extracting statistical and linguistic information

Corpus (Plural Corpora)

- A collection of written text or recorded speech
- Useful for statistical knowledge acquisition techniques
- Chomsky,1957,Syntactic Structures: "The corpus, if natural, will be so wildly skewed that the description [of language based on the corpus] would be no more then a mere list."

Text Mining, Corpus Building, and

- → text
- corpus database that contains the text
- → concordancer as a front-end

Text Mining, Corpus Building, and Testing

- Non-digital
 - Käding 1897 100 million words [5000 analysts] → shorthand/stenography
 - Palmer 1933 → language pedagogy
 - Eaton 1940 → comparative linguistics
 - Fries, 1952 → corpus-based grammar
 - Quirk, 1961 → survey of English usage

Text Mining, Corpus Building, and Testing

.

*Corpus –*properties

- Machine readable form (digital)
- Representative of the domain under study
- Balanced sample
 - Text with specific parameters
 - (BNC, ANC)
- Finite (monitor corpus: non-finite [grows to reflect languages changes])

Text Mining, Corpus Building, and Testing

Corpora Resources I

- Brown Corpora (1 million tagged words)
 - Sample of written American English
- Lancaster-Oslo-Bergen corpus
- Penn Treebank
- British National Corpus (BNC)
- Project Gutenberg
 - http://www.promo.net/pg/
 - 6267 books free available
- Mannheimer Corpus Collection
 - http://corpora.ids-mannheim.de/cosmas/
 - (Demonstration einer statistischen Kookurenzanalyse)

Text Mining, Corpus Building, and Testing

Corpora Resources II

Brown Corpus	Lancast er-Oslo- Bergen	Penn Treeban k	British National Corpus (BE)	Birmingham Collection of English Text	Reut ers	Project Gutenbe rg	America n National Corpus	Mannhe imer Corpus Collecti on	UN Parallel Text Corpus
1967	1978		1994	1985	-	-			-
written AE	written BE		Written 90% spoken 10 %					German	English French Spanish
1.000.000 words		4.500.000 words	100.000.0 00 words	20.000.000 words	810.0 00 News	6267 Books		2 Bio. words	2.5 GB
		POS tagged	POS tagged						
		Wall Street Journal		Text Mining, C	ornus B	uilding_and			UN electronic text archives (88-93)
					esting	ananig, and			Multilingu8 al

Corpus Analysis

- Corpus linguistics is the study of language through analysis of natural-occurring data. It involves computational methods and tools and develops theories of linguistics and language use.
- Annotation is mostly required for analyzing linguistic pattern
- Information Retrieval based on annotated corpora

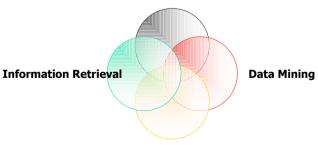
Text Mining, Corpus Building, and Testing

9

Text Mining – Process

- (1) Information Extraction
 - TM systems include an IE module
 - Locates significant vocabulary items in NL documents (linguistic knowledge!)
- (2) Tokenization, stemming and tagging
- (3) Cluster a collection of documents (IR)
- (4) Categorize the clusters
- Discover knowledge from the databases and visualization tools (DM)

Text Mining or Text Data Mining


- Computer Internet: Enormous growth in the volume of online text documents in multiple formats and languages
- Goal: discover knowledge from unstructured textual data
- Text Mining vs. Data Mining
 - Type of data under investigation
 - TM: **unstructured** natural-language documents
 - DM: highly structured data in data warehouses
- Text Mining vs. Information Retrieval
 - DM: derive new information from data
 - IR: extracts already **existing** information

Text Mining, Corpus Building, and Testing

10

Text Mining – Text Data Mining

Natural Language Processing

Machine Learning (KI)

Text Mining, Corpus Building, and

11

- Problem one: Text can be enriched with markups (HTML,XML,...), tables or other non-useful things...
- Problem two: We need a separated text to see word and sentence boundaries...
- Sentence Boundaries
- ?!. Are good choices, but how can we handle an abbreviation (like Dr.) or acronym (like I.B.M.)? What's with Numbers (112.211)?

Haplology: One Character has two simultaneous uses. [i.e. the period at the end could signal both a sentence break and an abbreviation]

90% of the periods in English are sentence boundary markers.

Text Mining, Corpus Building, and Testing

13

15

Tokenization – pre-processing corpora II

Sentence Boundaries

Solution: Regular Expressions with a list of abbreviations

Recent approaches:

Riley(1989): Statistical classification tree

Palmer and Hearst (1997): POS information used from a NN

to predict sentence boundaries

Maximum entropy approach (probabilistic distribution of

sentence boundaries in a text)

Text Mining, Corpus Building, and Testing

14

Tokenization – pre-processing corpora III

- Word Segmentation
- Occurrence of whitespaces or punctuation
- -> May work in English
- Punctuation: Apostrophes can be a part of a word (rock'n roll) or marking possessive nouns (cat's)
- Contractions: Spanish: del → de el
- Hyphenation: Compound word (email) or joining words (25-yearold)
- Whitespace: New York
- More: Numbers, Encoding (→ Unicode)

Annotated Corpora

A corpus that has been enhanced with tags providing explicit linguistic information

Unannotated Corpora
Plain text

- How?
 - GML (Generalized Markup Language)
 - SGML (-> HTML)
 - XML (subset of SGML)
 - XCES (XML Corpus Encoding Standard [XML-scheme])
 - RDF (Resource Description Framework)

Corpus Annotation -

Annotation Coverage

Annotation schemes

Part of speech annotation

Corpus Annotation -

Tagset Design II

- One of the first types of annotation
- Most common annotation today
- Lemmatization (or stemming)
 - Based on morphological analysis
- Parsing
 - Parsed corpora: treebanks (→ Penn Treebank)
 - Annotate the syntactic phrases (sentence, verb phrase, noun phrase, prepositional phrase)
- Semantic annotation, discourse analysis (greetings, apologies [sorry], politeness [please]), speech annotation

Text Mining, Corpus Building, and Testing

Testing

17

Penn Treebank Tagset

NNS PDT Coordinating conjunction e g and but or POS CD DT Determiner PRP FX Existential there PRP\$ FW Foreign Word Preposision or subordinating conjunction Adjective LIB Adjective, comparative RBR JUS Adjective, superlative LS List Item Marker RBS MD Modal e.g. can, could, might, may... SYM NN Noun, singular or mass NNP Proper Noun, singular

NNPS Proper Noun, plural Noun, plural e.g. all. both ... when they precede an article Possessive Ending e.g. Nouns ending in 's Personal Pronoun e.g. I, me, you, he.. Possessive Pronoun e.g. my, your, mine, yours... Most words that end in -ly as well as degree words like quite, too and very Adverb, comparative Adverbs with the comparative ending -er, with a strictly comparative meaning. Adverb superlative Should be used for mathematical scientific or technical symbols Text Mining, Corpus Building, and

e.g. uh, well, yes, my ..

Corpus Annotation -

Tagset Design I

- Tagging is the foundation for further analysis
- Most common type is part of speech (POS) tagging
- Tagset: annotation tags used within the corpus
- Most widely used tagsets in:
 - Brown Corpus (http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html)
 - Penn Treebank (see next slide)
 - British National Corpus (BNC C5; distinguishes 61 categories; http://www.natcorp.ox.ac.uk/what/c5spec.html)

Text Mining, Corpus Building, and Testing

18

Corpus Annotation -

Penn Treebank Tagset

Tagset Design III

VB	Verb, base form subsumes imperatives, infinitives and subjunctives	Punctuation Tags
VBD	Verb, past tense includes the conditional form of the verb to be	#
VBG	Verb, gerund or persent participle	\$
VBN	Verb, past participle	"
VBP	Verb, non-3rd person singular present	,
VBZ	Verb, 3rd person singular present	(
WDT	Wh-determiner e.g. which, and that when it is used as a relative pronoun)
WP	Wh-pronoun e.g. what, who, whom	
WP\$	Possessive wh-pronoun e.g.	:
WRB	Wh-adverb e.g. how, where why	**

Text Mining, Corpus Building, and Testing

Corpus Annotation -

Tagging Methods

- Lexicon based
- TAGGIT (Green and Rubin, 1971)
- Unable to provide tags for construction that have not been recognized
- Probabilistic taggers
 - Need to be trained to build a probability matrix (word/grammatical class/probability)
 - Bigram analysis (probability: a word of a certain POS follow) a word from another particular POS) (trigrams)
 - (hidden Markov model -> viterbi algorithm)
 - If an unknown word occurs the grammatical class can be found thought the distributional information
- Hybrid taggers (CLAWS)

Text Mining, Corpus Building, and Testina

21

Applications in Corpus Linguistics

Extracting information

Training purposes

Corpus Annotation –

Tagging Methods: CLAWS

- BNC: 100.000.000 words
- Free WWW trail available http://www.comp.lancs.ac.uk/ucrel/claws/trial.html
- Tagsets: C5 (British National Corpus) and C7
- Output: horizontal or vertical (with columns)
- If you would like to use our trial service, please complete the form below. From an academic site, you can enter up to 10,000 words of English running text. From a non-academic site, you can enter up to 300 words of English running text. If you enter more, it will be cut off at the appropriate word limit. Input format guidelines are available. To tag the text you have entered click the button below the form.
- With C5 horizontal it looks like this:
- With C5 horizontal it looks like this:

 If_CJS you_PNP would_VM0 like_VVI to_TO0 use_VVI our_DPS trial_NN1
 service_NN1__, please_AV0 complete_VVB the_AT0 form_NN1 below_AV0 . _.
 From_PRP an_AT0 academic_AJ0 site_NN1_, you_PNP can_VM0 enter_VVI
 up_AV021 to_AV022 10,000 CRD words_NN2 of_PRF English_AJ0 running_AJ0
 text_NN1 _. From_PRP a_AT0 non-academic_AJ0 site_NN1_, you_PNP can_VM0
 enter_VVI up_AV021 to_AV022 300_CRD words_NN2 of_PRF English_AJ0
 running_AJ0 text_NN1 _. If_CJS you_PNP enter_VVB more_AV0_, , it_PNP will_VM0
 be_VBI cut_VVN off_AVP at_PRP the_AT0 appropriate_AJ0 word_NN1 limit_NN1 _.
 Input_NN1 format_NN1 guidelines_NN2 are_VBB available_AJ0 _. To_TO0 tag_VVI
 the_AT0 text_NN1_you_PNP have_VHB entered_VVN click_VVB the_AT0 button_NN1
 below_PRP the_AT0 form_NN1ext_Mining, Corpus Building, and 22

Extracting information

Applications in Corpus Linguistics – Lexicon Acquisition

- Lexicon contains
 - Morphological
 - Syntactic
 - Semantic
 - Pragmatic information
- Lexicon used in
 - Information extraction
 - Document summarization
- Computational lexicon for taggers consists of the **lexemes** or **stem forms** of words
- If the tagger is used for a part of machine translation we need also the **translation**
- If incorrect information is in the lexicon the tagger cannot to be good as we want
- Machine readable dictionaries (MRD) containing lexical information
- Static
- Not available for many languages especially for translation purposes
- → Lexicon acquisition
 - Gather lexical information from text corpora
 - Corpora are now widely available
 - Can reflect dynamic and changing nature of language

24

Applications in Corpus Linguistics -**Discourse Analysis**

- Research topic: determining the psychological point of view (POV) of the author or a character in the text
- Current approaches:
 - Creating annotated corpora
 - Train a statistical discourse tagger module
 - Then the discourse tagger marks a corpus with **POV** expressions
 - → extremely difficult (no formal criteria)

Text Mining, Corpus Building, and Testina

25

27

- Several methods (full knowledge-based systems, interlingua methods, purely statistical approaches,..)
- MT includes
 - Multilingual lexicon
 - Tagger

 - Word sense disambiguation module
- All are based on corpora
- MT specific: **parallel corpora** (same text in several languages)
- **Text alignment**: create explicit link between the elements that are mutual translations (→ aligned corpus)
- Methods for aligning sentences
 - Comparing the lengths of textual units
 - Using Lexical content
 - Matching cognates (verwandte)

Text Mining, Corpus Building, and

Applications in Corpus Linguistics -Word Sense Disambiguation

- Goal: select the appropriate meaning to a given word based on the linguistic context
- Importance
 - → machine translation
 - → information retrieval
 - → parsing

Text Mining, Corpus Building, and

26

Corpus Processing Tools

- UNIX/POSIX Tools
- Word Counts
- Concordances
- Collocations
- Testing and **Evaluation**

Corpus Processing Tools –

POSIX Tools

- POSIX: Portable Operating System Interface (...to be pronounced pahz-icks not pohsix)
- POSIX Part 3: Shell and Utilities
- Standardization of tools so that they are widely available on several OS's.
- A lot of utilities use regular expressions which are equivalent to regular language and equivalent to DFA (deterministic finite automata) and NFA (nondeterministic finite automata)
 - the word problem given from the expression can be solved efficiently
- Regular expressions are for instance:
 - A letter or a number
 - [...] := Class of characters [^...] := complement class
 - Regular expression followed by +:= one or more
 - Regular expression followed by * := 0,1 or more (Kleene hull)
 - Regular expression | Regular expression := or
 - (Regular expression)
- Helmut Herold, Linux-Unix Kurzreferenz
- Regular expressions in C: man regex

Text Mining, Corpus Building, and Testing

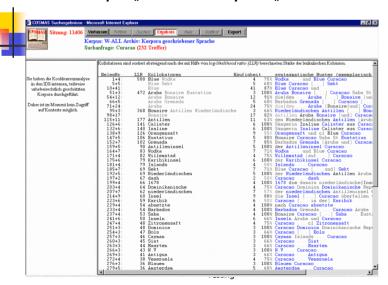
29

Concordances Concordances

- Context of a word can be from interest.
 - Especially for lexicographer
 - Intervening materials between verb and particle can be usefull for developing language grammars
- KWIC concordancing program (Key Word in Context)
 - Extracts all occurences of the word of interest and displays it with the word in the center and the surrounding context on the two sides.

Text Mining, Corpus Building, and Testing

Corpus Processing Tools -


Word Counts

- Now we have some text on our POSIX-workstation
- We can use several utilities which are born to help us
- wc -w (for word count)
- tr (search and replace)
- cut (to handle text with columns)
- sort
- SED (stream editor) [sed 'script' file]
 - Script: [address1 [, address2]] function [args]
 - Addresses: number or /regex/
 - Functions: p (print), q (quit), s (replace)
 - sed '/Kommentar/!s/[^A-Za-z]/ /g' text.txt | wc -w
- AWK
 - Pattern { action}
 - Patterns: BEGIN, END, expression, regex, concatenated pattern, pattern1, pattern2 (all rows between pattern1 match and pattern2 match)
 - Builtin-variables: ARGC, ARGV, FILENAME, NF (number of fields)

Text Mining, Corpus Building, and Testing

30

IDS Copora "Kookkurrenzanalyse" of "Curacao"

Corpus Processing Tools –

Collocations

- Concordance analysis is not very efficient for real quantitative analysis.
 - Not ordered by frequency
 - Number of hits can be very high
- "A Collocation is an expression that consists of a number of words within a short distance of each other."
- Collocation analysis
- Compositionality

Text Mining, Corpus Building, and Testing

22

35

Symbolic and Statistical Paradigms in Computational Linguistics

- Historically: conflict between symbolic and statistical approaches (Chomsky: Syntactic Structures (1957))
- Reasons
 - Role of quantitative measures
 - Type of data to be investigated
- Computational Approaches (in the 60s):
 - Generative theory; building linguistic models based on formal grammars
- 90s (computers faster; disk space cheaper):
 - Renewed interest in statistical models
- 1994: Workshop: The Balancing Act (New Mexico State University);
 Goal: dialogue between researchers of both sides
- Since then hybrid approaches growing

Corpus Processing Tools – Testing and Evaluation

- Test corpora
 - Corpora created to be used for evaluating and testing statistical algorithms and the performance of NLP systems.
 - Typically annotated
- Truthfile = annotated test corpus ?
- Split data set at the beginning into a training set and a test set
- Measurements:
 - Information Retrieval: Precision and Recall
 - Accuracy and coverage
- Criteria for a test set or truthfile
 - Consistency (reflect linguistic phenomena)
 - Size of Tagset (larger tagset → larger corpora to train sm)

Text Mining, Corpus Building, and Testing

34

Summary

- Introduction to corpus linguistics
- Chomsky "Syntactic Structures" (1957)
- Corpus types and corpora resources
- Applications influences corpus collection and processing
- Tools and programs to analyse corpora

Discussion please...

Text Mining, Corpus Building, and Testing