
Ontology Engineering

for the Semantic Web and Beyond

Natalya F. Noy

Stanford University
noy@smi.stanford.edu

A large part of this tutorial is based on

“Ontology Development 101: A Guide to Creating Your First Ontology”

by Natalya F. Noy and Deborah L. McGuinness

http://protege.stanford.edu/publications/ontology_development/ontology101.html

French wines

and

wine regions

California

wines and

wine regions

Which wine

should

I serve with

seafood

today? A sharedA shared

ONTOLOGYONTOLOGY

of of

wine and foodwine and food

Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

What Is An Ontology

! An ontology is an explicit description of a

domain:

! concepts

! properties and attributes of concepts

! constraints on properties and attributes

! Individuals (often, but not always)

! An ontology defines

! a common vocabulary

! a shared understanding

Ontology Examples

! Taxonomies on the Web

! Yahoo! categories

! Catalogs for on-line shopping

! Amazon.com product catalog

! Domain-specific standard terminology

! Unified Medical Language System (UMLS)

! UNSPSC - terminology for products and
services

What Is “Ontology Engineering”?

Ontology Engineering: Defining terms in the
domain and relations among them

! Defining concepts in the domain (classes)

! Arranging the concepts in a hierarchy
(subclass-superclass hierarchy)

! Defining which attributes and properties
(slots) classes can have and constraints on
their values

! Defining individuals and filling in slot values

Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

Why Develop an Ontology?

! To share common understanding of the

structure of information

! among people

! among software agents

! To enable reuse of domain knowledge

! to avoid “re-inventing the wheel”

! to introduce standards to allow interoperability

More Reasons

! To make domain assumptions explicit

! easier to change domain assumptions
(consider a genetics knowledge base)

! easier to understand and update legacy data

! To separate domain knowledge from the
operational knowledge

! re-use domain and operational knowledge
separately (e.g., configuration based on
constraints)

An Ontology Is Often Just the

Beginning

Ontologies

Software

agents
Problem-

solving

methods

Domain-

independent

applications

Databases
Declare

structure

Knowledge

bases
Provide

domain

description

Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

Wines and Wineries

Ontology-Development Process

In this tutorial:

determine

scope

consider

reuse

enumerate

terms

define

classes

define

properties

define

constraints

create

instances

In reality - an iterative process:

determine

scope

consider

reuse

enumerate

terms
define

classes

consider

reuse

enumerate

terms

define

classes

define

properties

create

instances

define

classes

define

properties

define

constraints

create

instances

define

classes

consider

reuse

define

properties

define

constraints

create

instances

Ontology Engineering versus

Object-Oriented Modeling

An ontology

! reflects the structure of

the world

! is often about structure of

concepts

! actual physical

representation is not an

issue

An OO class structure

! reflects the structure of

the data and code

! is usually about behavior

(methods)

! describes the physical

representation of data

(long int, char, etc.)

Preliminaries - Tools

! All screenshots in this tutorial are from
Protégé-2000, which:
! is a graphical ontology-development tool

! supports a rich knowledge model

! is open-source and freely available
(http://protege.stanford.edu)

! Some other available tools:
! Ontolingua and Chimaera

! OntoEdit

! OilEd

Determine Domain and Scope

! What is the domain that the ontology will
cover?

! For what we are going to use the ontology?

! For what types of questions the information
in the ontology should provide answers
(competency questions)?

Answers to these questions may change during
the lifecycle

determine

scope
consider

reuse

enumerate

terms

define

classes

define

properties

define

constraints

create

instances

Competency Questions

! Which wine characteristics should I consider when
choosing a wine?

! Is Bordeaux a red or white wine?

! Does Cabernet Sauvignon go well with seafood?

! What is the best choice of wine for grilled meat?

! Which characteristics of a wine affect its appropriateness
for a dish?

! Does a flavor or body of a specific wine change with
vintage year?

! What were good vintages for Napa Zinfandel?

Consider Reuse

! Why reuse other ontologies?

! to save the effort

! to interact with the tools that use other

ontologies

! to use ontologies that have been validated

through use in applications

determine

scope

consider

reuse
enumerate

terms

define

classes

define

properties

define

constraints

create

instances

What to Reuse?

! Ontology libraries

! DAML ontology library (www.daml.org/ontologies)

! Ontolingua ontology library
(www.ksl.stanford.edu/software/ontolingua/)

! Protégé ontology library
(protege.stanford.edu/plugins.html)

! Upper ontologies

! IEEE Standard Upper Ontology (suo.ieee.org)

! Cyc (www.cyc.com)

What to Reuse? (II)

! General ontologies

! DMOZ (www.dmoz.org)

! WordNet (www.cogsci.princeton.edu/~wn/)

! Domain-specific ontologies

! UMLS Semantic Net

! GO (Gene Ontology) (www.geneontology.org)

Enumerate Important Terms

! What are the terms we need to talk about?

! What are the properties of these terms?

! What do we want to say about the terms?

consider

reuse
determine

scope

enumerate

terms
define

classes

define

properties

define

constraints

create

instances

Enumerating Terms - The Wine

Ontology

wine, grape, winery, location,

wine color, wine body, wine flavor, sugar

content

white wine, red wine, Bordeaux wine

food, seafood, fish, meat, vegetables,

cheese

Define Classes and the Class

Hierarchy

! A class is a concept in the domain
! a class of wines

! a class of wineries

! a class of red wines

! A class is a collection of elements with similar
properties

! Instances of classes
! a glass of California wine you’ll have for lunch

consider

reuse
determine

scope

define

classes
define

properties

define

constraints

create

instances

enumerate

terms

Class Inheritance

! Classes usually constitute a taxonomic hierarchy

(a subclass-superclass hierarchy)

! A class hierarchy is usually an IS-A hierarchy:

an instance of a subclass is an instance

of a superclass

! If you think of a class as a set of elements, a

subclass is a subset

Class Inheritance - Example

! Apple is a subclass of Fruit

Every apple is a fruit

! Red wines is a subclass of Wine

Every red wine is a wine

! Chianti wine is a subclass of Red wine

Every Chianti wine is a red wine

Levels in the Hierarchy

Middle

level

Top

level

Bottom

level

Modes of Development

! top-down – define the most general
concepts first and then specialize them

! bottom-up – define the most specific
concepts and then organize them in more
general classes

! combination – define the more salient
concepts first and then generalize and
specialize them

Documentation

! Classes (and slots) usually have

documentation

! Describing the class in natural language

! Listing domain assumptions relevant to the

class definition

! Listing synonyms

! Documenting classes and slots is as

important as documenting computer code!

Define Properties of Classes – Slots

! Slots in a class definition describe

attributes of instances of the class and

relations to other instances

Each wine will have color, sugar content,

producer, etc.

consider

reuse

determine

scope

define

constraints

create

instances

enumerate

terms

define

classes

define

properties

Properties (Slots)

! Types of properties
! “intrinsic” properties: flavor and color of wine

! “extrinsic” properties: name and price of wine

! parts: ingredients in a dish

! relations to other objects: producer of wine (winery)

! Simple and complex properties
! simple properties (attributes): contain primitive values

(strings, numbers)

! complex properties: contain (or point to) other objects
(e.g., a winery instance)

Slots for the Class Wine

(in Protégé-2000)

Slot and Class Inheritance

! A subclass inherits all the slots from the

superclass
If a wine has a name and flavor, a red wine also has a

name and flavor

! If a class has multiple superclasses, it

inherits slots from all of them
Port is both a dessert wine and a red wine. It inherits

“sugar content: high” from the former and “color:red”

from the latter

Property Constraints

! Property constraints (facets) describe or

limit the set of possible values for a slot
The name of a wine is a string

The wine producer is an instance of Winery

A winery has exactly one location

consider

reuse

determine

scope

create

instances

enumerate

terms

define

classes

define

constraints
define

properties

Facets for Slots at the Wine Class

Common Facets

! Slot cardinality – the number of values a
slot has

! Slot value type – the type of values a slot
has

! Minimum and maximum value – a range of
values for a numeric slot

! Default value – the value a slot has unless
explicitly specified otherwise

Common Facets: Slot Cardinality

! Cardinality

! Cardinality N means that the slot must have N values

! Minimum cardinality

! Minimum cardinality 1 means that the slot must have a value

(required)

! Minimum cardinality 0 means that the slot value is optional

! Maximum cardinality

! Maximum cardinality 1 means that the slot can have at most one

value (single-valued slot)

! Maximum cardinality greater than 1 means that the slot can

have only one value (multiple-valued slot)

Common Facets: Value Type

! String: a string of characters (“Château Lafite”)

! Number: an integer or a float (15, 4.5)

! Boolean: a true/false flag

! Enumerated type: a list of allowed values (high,
medium, low)

! Complex type: an instance of another class
! Specify the class to which the instances belong

The Wine class is the value type for the slot “produces”
at the Winery class

Domain and Range of Slot

! Domain of a slot – the class (or classes)

that have the slot

! More precisely: class (or classes) instances of

which can have the slot

! Range of a slot – the class (or classes) to

which slot values belong

Facets and Class Inheritance

! A subclass inherits all the slots from the

superclass

! A subclass can override the facets to “narrow”

the list of allowed values

! Make the cardinality range smaller

! Replace a class in the range with a subclass

Wine

French

wine

Winery

French

winery

is-a is-a

producer

producer

Create Instances

! Create an instance of a class

! The class becomes a direct type of the instance

! Any superclass of the direct type is a type of the

instance

! Assign slot values for the instance frame

! Slot values should conform to the facet constraints

! Knowledge-acquisition tools often check that

consider

reuse

determine

scope

create

instances
enumerate

terms

define

classes

define

properties

define

constraints

Creating an Instance: Example Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

Going Deeper

! Breadth-first coverage

determine

scope

consider

reuse

enumerate

terms

define

classes

define

properties

define

constraints

create

instances

! Depth-first coverage

determine

scope

consider

reuse

enumerate

terms d
e

fin
e

c
la

s
s

e
s

d
e

fin
e

p
ro

p
e

rtie
s

d
e

fin
e

c
o

n
s

tra
in

ts

create

instances

Defining Classes and a Class Hierarchy

! The things to remember:

! There is no single correct class hierarchy

! But there are some guidelines

! The question to ask:

“Is each instance of the subclass an instance of

its superclass?”

Multiple Inheritance

! A class can have more than

one superclass

! A subclass inherits slots

and facet restrictions from

all the parents

! Different systems resolve

conflicts differently

Disjoint Classes

! Classes are disjoint if they cannot have common
instances

! Disjoint classes cannot have any common subclasses
either

Red wine, White wine,

Rosé wine are disjoint

Dessert wine and Red

wine are not disjoint

Wine

Red

wine

Rosé

wine

White

wine

Dessert

wine

Port

Avoiding Class Cycles

! Danger of multiple

inheritance: cycles in the

class hierarchy

! Classes A, B, and C have

equivalent sets of instances

! By many definitions, A, B, and

C are thus equivalent

Siblings in a Class Hierarchy

! All the siblings in the class

hierarchy must be at the

same level of generality

! Compare to section and

subsections in a book

The Perfect Family Size

! If a class has only one child,

there may be a modeling

problem

! If the only Red Burgundy we

have is Côtes d’Or, why

introduce the subhierarchy?

! Compare to bullets in a

bulleted list

The Perfect Family Size (II)

! If a class has more

than a dozen children,

additional

subcategories may be

necessary

! However, if no natural

classification exists,

the long list may be

more natural

Single and Plural Class Names

! A “wine” is not a kind-of

“wines”

! A wine is an instance of the

class Wines

! Class names should be either

! all singular

! all plural

Class

Instance

instance-of

Classes and Their Names

! Classes represent concepts in the domain, not their

names

! The class name can change, but it will still refer to the

same concept

! Synonym names for the same concept are not different

classes

! Many systems allow listing synonyms as part of the class

definition

A Completed

Hierarchy of

Wines

Back to the Slots:

Domain and Range

! When defining a domain or range
for a slot, find the most general
class or classes

! Consider the flavor slot
! Domain: Red wine, White wine, Rosé

wine

! Domain: Wine

! Consider the produces slot for a
Winery:
! Range: Red wine, White wine, Rosé

wine

! Range: Wine

Back to the Slots:

Domain and Range

! When defining a domain or range for a slot, find the most
general class or classes

! Consider the flavor slot
! Domain: Red wine, White wine, Rosé wine

! Domain: Wine

! Consider the produces slot for a Winery:
! Range: Red wine, White wine, Rosé wine

! Range: Wine

slotclass allowed values

DOMAIN RANGE

Defining Domain and Range

! A class and a

superclass – replace

with the superclass

! All subclasses of a

class – replace with

the superclass

! Most subclasses of a

class – consider

replacing with the

superclass

Inverse Slots

Maker and

Producer

are inverse slots

Inverse Slots (II)

! Inverse slots contain redundant information, but
! Allow acquisition of the information in either direction

! Enable additional verification

! Allow presentation of information in both directions

! The actual implementation differs from system to
system
! Are both values stored?

! When are the inverse values filled in?

! What happens if we change the link to an inverse
slot?

Default Values

! Default value – a value the slot gets when

an instance is created

! A default value can be changed

! The default value is a common value for

the slot, but is not a required value

! For example, the default value for wine

body can be FULL

Limiting the Scope

! An ontology should not contain all the

possible information about the domain

! No need to specialize or generalize more than

the application requires

! No need to include all possible properties of a

class

! Only the most salient properties

! Only the properties that the applications require

Limiting the Scope (II)

! Ontology of wine, food, and their pairings
probably will not include
! Bottle size

! Label color

! My favorite food and wine

! An ontology of biological experiments will
contain
! Biological organism

! Experimenter

! Is the class Experimenter a subclass of
Biological organism?

Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

Ontologies and the SW Languages

! Most Semantic Web languages are designed

explicitly for representing ontologies

! RDF Schema

! DAML+OIL

! SHOE

! XOL

! XML Schema

SW Languages

! The languages differ in their
! syntax

! We are not concerned with it here – An ontology is a conceptual
representation

! terminology

! Class-concept

! Instance-object

! Slot-property

! expressivity

! What we can express in some languages, we cannot express in
others

! semantics

! The same statements may mean different things in different
languages

RDF and RDF Schema Classes

RDF Schema Specification 1.0 (http://www.w3.org/TR/2000/CR-rdf-schema-20000327/)

RDF(S) Terminology and Semantics

! Classes and a class hierarchy
! All classes are instances of rdfs:Class

! A class hierarchy is defined by rdfs:subClassOf

! Instances of a class
! Defined by rdf:type

! Properties
! Properties are global:

A property name in one place is the same as the property
name in another (assuming the same namespace)

! Properties form a hierarchy, too (rdfs:subPropertyOf)

Property Constraints in RDF(S)

! Cardinality constraints
! No explicit cardinality constraints

! Any property can have multiple values

! Range of a property
! a property can have only one range

! Domain of a property
! a property can have more than one domain (can be

attached to more than one class)

! No default values

DAML+OIL:

Classes And a Class Hierarchy

! Classes
! Each class is an instance of daml:Class

! Class hierarchy
! Defined by rdfs:subClassOf

! More ways to specify organization of classes
! Disjointness (daml:disjointWith)

! Equivalence (daml:sameClassAs)

! The class hierarchy can be computed from the
properties of classes

More Ways To Define a Class in

DAML+OIL

! Union of classes
A class Person is a union of classes Male and Female

! Restriction on properties
A class Red Thing is a collection of things with color: Red

! Intersection of classes
A class Red Wine is an intersection of Wine and Red Thing

! Complement of a class
Carnivores are all the animals that are not herbivores

! Enumeration of elements
A class Wine Color contains the following instances: red, white,

rosé

Property Constraints in DAML+OIL

! Cardinality
! Minimum, maximum, exact cardinality

! Range of a property
! A property range can include multiple classes: the

value of a property must be an instance of each of the
classes

! Can specify explicit union of classes if need different
semantics

! Domain of a property – same as range

! No default values

Outline

! What is an ontology?

! Why develop an ontology?

! Step-By-Step: Developing an ontology

! Going deeper: Common problems and solutions

! Ontologies in the Semantic Web languages

! Current research issues in ontology engineering

Research Issues in Ontology

Engineering

! Content generation

! Analysis and evaluation

! Maintenance

! Ontology languages

! Tool development

Content: Top-Level Ontologies

! What does “top-level” mean?

! Objects: tangible, intangible

! Processes, events, actors, roles

! Agents, organizations

! Spaces, boundaries, location

! Time

! IEEE Standard Upper Ontology effort

! Goal: Design a single upper-level ontology

! Process: Merge upper-level of existing ontologies

Content: Knowledge Acquisition

! Knowledge acquisition is a bottleneck

! Sharing and reuse alleviate the problem

! But we need automated knowledge acquisition

techniques

! Linguistic techniques: ontology acquisition from text

! Machine-learning: generate ontologies from structured

documents (e.g., XML documents)

! Exploiting the Web structure: generate ontologies by crawling

structured Web sites

! Knowledge-acquisition templates: experts specify only part of

the knowledge required

Analysis

! Analysis: semantic consistency

! Violation of property constraints

! Cycles in the class hierarchy

! Terms which are used but not defined

! Interval restrictions that produce empty intervals
(min > max)

! Analysis: style

! Classes with a single subclass

! Classes and slots with no definitions

! Slots with no constraints (value type, cardinality)

! Tools for automated analysis

! Chimaera (Stanford KSL)

! DAML validator

Evaluation

! One of the hardest problems in ontology

design

! Ontology design is subjective

! What does it mean for an ontology to be

correct (objectively)?

! The best test is the application for which

the ontology was designed

Ontology Maintenance

! Ontology merging
! Having two or more overlapping ontology, create a

new one

! Ontology mapping
! Create a mapping between ontologies

! Versioning and evolution
! Compatibility between different versions of the same

ontology

! Compatibility between versions of an ontology and
instance data

Ontology Languages

! What is the “right” level of

expressiveness?

! What is the “right” semantics?

! When does the language make “too many”

assumptions?

Ontology-Development Tools

! Support for various ontology language

(knowledge interchange)

! Expressivity

! Usability

! More and more domain experts are involved

in ontology development

! Multiple parentheses and variables will no

longer do

Where to Go From Here?

! Tutorials
! Natalya F. Noy and Deborah L. McGuinness (2001) “Ontology

Development 101: A Guide to Creating Your First Ontology”
http://protege.stanford.edu/publications/ontology_development/o
ntology101.html

! Farquhar, A. (1997). Ontolingua tutorial.
http://ksl-web.stanford.edu/people/axf/tutorial.pdf

! We borrowed some ideas from this tutorial

! Methodology
! Gómez-Pérez, A. (1998). Knowledge sharing and reuse.

Handbook of Applied Expert Systems. Liebowitz, editor, CRC
Press.

! Uschold, M. and Gruninger, M. (1996). Ontologies: Principles,
Methods and Applications. Knowledge Engineering Review
11(2)

Transitivity of the Class Hierarchy

! The is-a relationship is
transitive:

B is a subclass of A

C is a subclass of B

C is a subclass of A

! A direct superclass of
a class is its “closest”
superclass

