First-Order Logic

Blackburn & Bos, pp. 1-29

Ling335: Computational Semantics
Miriam Butt and Maribel Romero
WiSe2014-15

First-Order Logic

- First-order logic is a formalism used...
 - to represent meaning in natural language, and
 - to carry out various inference tasks:
 - Querying task
 - Consistency checking task
 - Informativity checking task
- Today (first half of chapter 1), we will present firstorder logic and describe the three tasks.
- In second half of chapter 1, we will write a first-order model checker performing the querying task.

Roadmap

- First-Order Logic
 - Vocabulary
 - First-order models (semantics)
 - First-order languages (syntax)
 - Truth and Satisfaction
 - Adding functions symbols, equality and sorted variables
- Three inference tasks
 - Querying
 - Consistency checking
 - Informativity checking

Vocabulary

A vocabulary is a set of predicates and individual constants,

e.g.

```
{ (LOVE,2)
 (CUSTOMER,1)
 (ROBBER,1)
 (MIA,0)
 (VINCENT,0)
 (HONEY-BUNNY,0)
 (YOLANDA,0) }
```

- Vocabularies tell us which first-order lgs and which firstorder models belong together. E.g. a lg with the vocabulary above cannot be evaluated in a model that is just about cleaning products.
- Note: Unlike in Prolog, a given predicate can only be used with a fixed arity.

First-Order Models

- A model is a semantic object: roughly, a situation
- A model for a given vocabulary provides:
 - a non-empty collection of entities (domain D) to be talked about
 - the mapping (interpretation function F) from each symbol in the vocabulary to the appropriate semantic value
- In set-theoretic terms, a model is an ordered pair (D,F).

First-Order Models

Model M₁

```
F(MIA) = d_1
F(HONEY-BUNNY) = d_2
F(VINCENT) = d_3
F(YOLANDA) = d_4
F(COSTUMER) = \{d_1, d_3\}
F(ROBBER) = \{d_2, d_4\}
F(LOVE) = \{(d_4, d_2), (d_3, d_1)\}
```

Model M₂

$$F(MIA) = d_2$$

$$F(HONEY-BUNNY) = d_1$$

$$F(VINCENT) = d_4$$

$$F(YOLANDA) = d_1$$

$$F(COSTUMER) = \{d_1, d_2, d_4\}$$

$$F(ROBBER) = \{d_3, d_5\}$$

$$F(LOVE) = \{\} = \emptyset$$

First-Order Languages: Symbols

- Symbols of a first-order language:
 - Vocabulary symbols (=non-logical symbols)
 - Countably infinite collection of variables: x, y, z..., x_1 , x_2 ,...
 - Boolean connectives: ¬ ∧ ∨ →
 - Universal quantifier ∀ and existential quantifier ∃
 - Round brackets and comma
- Among these symbols, we distinguish terms...
 - individual constants (≈ proper names), e.g. MIA

- Individual variables (≈ pronouns), e.g. x
- ... and predicates, e.g. ROBBER.

First-Order Languages: Syntax

Atomic formulas

0. If R is a predicate of arity n and τ_1 , ..., τ_n are terms, then R(τ_1 , ..., τ_n) is an atomic formula.

Well-formed formulas (wffs)

- 1. All atomic formulas are wffs.
- 2. If ϕ and ψ are wffs, then so are $\neg \phi$, $(\phi \wedge \psi)$, $(\phi \vee \psi)$ and $(\phi \rightarrow \psi)$.
- 3. If ϕ is a wff and x is a variable, then both $\forall x \phi$ and $\exists x \phi$ are wffs. We call the <u>matrix or scope</u> of such wffs.
- 4. Nothing else is a wff.

Examples

```
¬LOVE(YOLANDA,VINCENT)

(ROBBER(MIA) \rightarrow LOVE(MIA,HONEY-BUNNY))

\forallx (CUSTOMER(x) \rightarrow \existsyLOVE(y,x))
```

First-Order Languages: some syntactic conventions

- We often drop outer brackets: E.g. instead of $(\phi \wedge \psi)$, we write $\phi \wedge \psi$.
- Negation \neg has more "glue" than \land and \lor , which in turn have more glue than \rightarrow .

First-Order Languages: free vs. bound variables

- An occurrence of a variable x is **bound** if it occurs in the scope of $\forall x$ or $\exists x$. A variable is **free** if it is not bound.
- A formula with no free variables is a special kind of formula called sentence.

Truth and Satisfaction

- 2-place relation truth that holds –or doesn't– between a sentence and a model of the same vocabulary
- 3-place relation *satisfaction* that holds —or doesn't—between a formula, a model M of the same vocabulary and an assignment function g from variables to values

Formula

(description)

∀xROBBER(x) ROBBER(x) M = (D,F) (situation)

 M_1

g: variables → D

(context)

 $g = [x \rightarrow YOLANDA]$

 $y \rightarrow MIA$

z → HONEY-BUNNY]

Satisfaction

• Interpretation function for vocabulary and variables: $I_{\epsilon}^{g}(.)$

```
i. If \tau is a constant term, then I_F^g(\tau) = F(\tau) ii. If \tau is a variable term, then I_F^g(\tau) = g(\tau) iii. If P is a predicate, then I_F^g(P) = F(P)
```

x-variant of an assignment

```
If g and g' are assignments in M and, for all variables y other that x, g(y) = g'(y), then g' is an x-variant of g
```

• M,g $\models \varphi$ is read as " φ is satisfied in M wrt assignment g"

Satisfaction (cont'd)

Definition of satisfaction:

```
0. M,g \models R(\tau_1,...,\tau_n) iff (I_F^g(\tau_1),...,I_F^g(\tau_n)) \in F(R)
2.1 \text{ M, g} = \neg \phi
                           iff not M, g \models \phi
                       iff M,g \models \phi and M,g \models \psi
2.2 M, q = (\phi \wedge \psi)
2.3 M, q \models (\phi \lor \psi) iff M, q \models \phi or M, q \models \psi
2.4 M, q \models (\phi \rightarrow \psi)
                                iff not M, g \neq \phi, or M, g \neq \psi
                                         M,g' \models \phi for all x-variants g'
3.1 M, q \models \forall x \phi
                                iff
                                           of q
3.2 M, g \models \exists x \phi
                                         M,g' \models \phi for some x-variant g'
                                 iff
                                            of a
```

Truth

Definition of truth

A sentence ϕ is true in a Model M iff, for any assignment g from variables to values in M, we have that M,g $\models \phi$.

• $M \models \phi$ is read as " ϕ is true in M",

Some additions

- Function symbols
- Equality predicate
- Sorted variables

Adding function symbols

- FATHER(BUTCH) not as "Butch is a father" but as "the father of Butch"
- An n-place function symbol f is interpreted as a function that takes an n-tuple of elements of D as input and yields an element of D as output.
- Additional syntactic rule:

```
-1.If f is a function symbol of arity n and \tau_1, ..., \tau_n are terms, then f(\tau_1, \ldots, \tau_n) is a term.
```

Additional semantic rule:

```
-1. If \tau is a term of the form f(\tau_1, ..., \tau_n), then I_F^g(\tau) = F(f)(I_F^g(\tau_1), ..., I_F^g(\tau_n))
```

Adding equality

- Two-place relation symbol =, with infix notation, e.g. $\tau_1 = \tau_2$.
- Additional syntactic rule:

```
00. If \tau_{\text{1}} and \tau_{\text{n}} are terms, then \tau_{\text{1}}\text{=}\ \tau_{\text{n}} is an atomic formula.
```

Additional semantic rule:

```
00. M_{r}g \models \tau_{1} = \tau_{2} iff I_{F}^{g}(\tau_{1}) equals I_{F}^{g}(\tau_{2})
```

Adding sorted variables

- $\forall x(ANIMATE(x) \rightarrow BREATH(x))$ abbreviated as $\forall a BREATH(a)$
- ¬∃x(INANIMATE(x) ∧ TALK(x)) abbreviated as
 ¬∃i TALK(i)
- Not incorporated into the current fragment.
 Some use for this is chapter 3.

Roadmap

- First-Order Logic
 - Vocabulary
 - First-order models (semantics)
 - First-order languages (syntax)
 - Truth and Satisfaction
 - Adding functions symbols, equality and sorted variables
- Three inference tasks
 - Querying
 - Consistency checking
 - Informativity checking

Querying Task

Given a model M (, and assignment g) and a first-order formula ϕ , is ϕ satisfied in M (with respect to g) or not?

- Is querying a task we can compute? Yes, if we fix what the free variables stand for (i.e., if we spell out g at least for the variables used) and if we confine ourselves to finite models.
- Model checker: program that performs this task

Consistency Checking Task

- A formula ϕ is consistent/satisfiable if it is satisfied in at least one model.
- A finite set of formulas $\{\phi_1,...,\phi_n\}$ is consistent/satisfiable if the formula $(\phi_1 \wedge ... \wedge \phi_n)$ is consistent/satisfiable.

Given a first-order formula ϕ , is ϕ consistent/satisfied or inconsistent/unsatisfiable?

Consistency Checking Task

- Is this task computationally decidable? No.
 - vast mathematical universe of models
 - some satisfiable formulas only have infinite satisfying models
- But a partial solution can be reached by moving from a model-theoretic (semantic) perspective to a prooftheoretic (syntactic) perspective (Chapters 4-5)

Informativity Checking Task

- A formula ϕ is valid if it is satisfied in all models given any variable assignment. $\models \phi$
- Valid formulas are uninformative, as they do not rule out possibilities.
- Invalid formulas are informative, as they rule out possibilities.

Given a first-order formula ϕ , is ϕ informative/invalid or uninformative/valid?

Informativity Checking Task

- An argument with a finite set of premises $\phi_1,...,\phi_n$ and a conclusion ψ is valid if the formula $(\phi_1 \land ... \land \phi_n) \rightarrow \psi$ is valid.
- More formally:

Semantic Deduction Theorem:

$$\phi_1,...,\phi_n \models \psi$$
 iff $\models (\phi_1 \land ... \land \phi_n) \rightarrow \psi$)

Given an argument μ with a finite set of premises $\phi_1,...$, ϕ_n and a conclusion ψ , is μ informative/invalid or uninformative/valid?

Informativity Checking Task

- Is the informativity checking task computationally decidable? No, as before.
- But a partial solution can be reached by moving from a model-theoretic (semantic) perspective to a prooftheoretic (syntactic) perspective (Chapters 4-5)

Relating Consistency and Informativity

- ϕ is consistent/satisfiable iff $\neg \phi$ is informative/invalid.
- ϕ is inconsistent/unsatisfiable iff $\neg \phi$ is uninformative/valid.
- ϕ is informative/invalid iff $\neg \phi$ is consistent/satisfiable.
- ϕ is uninformative/valid iff $\neg \phi$ is inconsistent/unsatisfiable.

Exercises

• Mandatory: 1.1.1, 1.1.3-1.1.5, 1.1.7, 1.1.10

• Optional: 1.1.6, 1.1.11, 1.1.17, <u>1.2.1</u>