First-Order Logic
Blackburn & Bos, pp. 1-29

Ling335: Computational Semantics
Miriam Butt and Maribel Romero
WiSe2014-15

First-Order Logic

* First-order logic is a formalism used...

— to represent meaning in natural language, and

— to carry out various inference tasks:
e Querying task
* Consistency checking task
* Informativity checking task

* Today (first half of chapter 1), we will present first-
order logic and describe the three tasks.

* In second half of chapter 1, we will write a first-order
model checker performing the querying task.

Roadmap

* First-Order Logic
— Vocabulary
— First-order models (semantics)
— First-order languages (syntax)
— Truth and Satisfaction

— Adding functions symbols, equality and sorted
variables

* Three inference tasks
— Querying
— Consistency checking
— Informativity checking

Vocabulary

 Avocabulary is a set of predicates and individual constants,
e.g.

{ (LOVE,2)
(CUSTOMER, 1)
(ROBBER, 1)

(MIA,0)

(VINCENT,0)
(HONEY-BUNNY,0)
(YOLANDA,0) }

* Vocabularies tell us which first-order Igs and which first-
order models belong together. E.g. a Ig with the vocabulary
above cannot be evaluated in a model that is just about
cleaning products.

* Note: Unlike in Prolog, a given predicate can &<
only be used with a fixed arity.

First-Order Models

A model is a semantic object: roughly, a situation

A model for a given vocabulary provides:

— a non-empty collection of entities (domain D) to be talked
about

— the mapping (interpretation function F) from each symbol
in the vocabulary to the appropriate semantic value

* In set-theoretic terms, a model is an ordered pair
(D,F).

First-Order Models

Model M,

F(MIA) = d,
F(HONEY-BUNNY) = d,
F(VINCENT) = d,
F(YOLANDA) = d,
F(COSTUMER) = {d,, d.}
F(ROBBER) = {d,, d,}
F(LOVE) = {(d,, d,), (d3, d,)}

Model M,

F(MIA) = d,
F(HONEY-BUNNY) = d,
F(VINCENT) = d,
F(YOLANDA) = d,
F(COSTUMER) = {d,, d,, d,}
F(ROBBER) = {d, d.}
F(LOVE)={} =&

First-Order Languages:
Symbols

* Symbols of a first-order language:
— Vocabulary symbols (=non-logical symbols)
— Countably infinite collection of variables: x, v, z..., x;, x,,...
— Boolean connectives: = A v —
— Universal quantifier V and existential quantifier d
— Round brackets and comma

 Among these symbols, we distinguish terms...

— individual constants (= proper names), e.g. MIA .1

— Individual variables (= pronouns), e.g. x

e ..and predicates, e.g. ROBBER.

First-Order Languages:
Syntax

e Atomic formulas

0. If R 1s a predicate of arity n and T, .. ,T, are
terms, then R(t,, .. ,T,) 1s an atomic formula.

 Well-formed formulas (wffs)
1. All atomic formulas are wffs.

2. If ¢ and ¢y are wffs, then so are =¢, (OAY), (V)
and (¢—v) .
3. If ¢ is a wff and x is a variable, then both Vx¢

and dx¢ are wffs. We call the matrix or scope of
such wffs.

4. Nothing else 1s a wff.

 Examples

- LOVE(YOLANDA,VINCENT)
(ROBBER(MIA) — LOVE(MIA,HONEY-BUNNY))
Vx (CUSTOMER(x) — JyLOVE(y,x))

First-Order Languages:
some syntactic conventions

 We often drop outer brackets:
E.g. instead of (pAY), we write payp.

 Negation = has more “glue” than A and v, which in
turn have more glue than — .

First-Order Languages:
free vs. bound variables

 An occurrence of a variable x is bound if it occurs in
the scope of Vx or dx. A variable is free if it is not
bound.

* A formula with no free variables is a special kind of
formula called sentence.

VxROBBER(x) _ ROBBER(x) ‘He is a robber’
‘Everybody is a » .

robber ROBBER(y) ‘She is a robber’

/

VyROBBER(y)

Place holders

Truth and Satisfaction

e 2-place relation truth that holds —or doesn’t—
between a sentence and a model of the same

vocabulary
* 3-place relation satisfaction that holds —or doesn’t—

between a formula, a model M of the same
vocabulary and an assignment function g from

variables to values

Formula M = (D,F) g: variables = D
(description) (situation) (context)

g= [x = YOLANDA
VxROBBER(x) M, y = MIA

ROBBER(x) z = HONEY-BUNNY]

Satisfaction

* Interpretation function for vocabulary and variables:

MO

i. If t is a constant term, then I (t) = F (1)
ii. If Tt is a variable term, then I (t) = g (1)
iii. If P is a predicate, then I (P) = F(P)

e x-variant of an assignment

If g and g’ are assignments in M and, for all
variables y other that x, g(y)= g’ (y),
then g’ 1s an x-variant of g

* M,g F ¢ isreadas
“¢ is satisfied in M wrt assighment g”

Satisfaction (cont’d)

e Definition of satisfaction:

0. M,gk R(t,,..,T,) iff (I2 (T)),r I2 (T)) € F(R)

2.1 M,gF —¢ 1ff not M,g¥E ¢

2.2 M,gF (pAY) iff M,gfF ¢ and M,gE Y

2.3 M,gF (¢pvp) iff M,9F ¢ or M,gF ¢

2.4 M,9F (¢—V) iff not M,gF ¢, or M,gfE ¢

3.1 M,gF Vxo iff M,g’"E ¢ for all x-variants g’
of g

3.2 M,gF dxo iff M,g’" £ ¢ for some x-variant g’

of g

Truth

e Definition of truth

A sentence ¢ is true in a Model M 1iff, for any
assignment g from variables to values 1in M, we
have that M,g FE ¢.

* M E ¢ isread as “¢ is truein M”,

Some additions

* Function symbols
* Equality predicate
* Sorted variables

Adding function symbols

FATHER(BUTCH) not as “Butch is a father”
but as “the father of Butch”

An n-place function symbol f is interpreted as a
function that takes an n-tuple of elements of D
as input and yields an element of D as output.

Additional syntactic rule:

-1.If £ 1s a function symbol of arity n and T,
.. ,T, are terms, then f(t,, .. ,T,)1s a term.

Additional semantic rule:

-1.If t 1s a term of the form f£(t,, .. ,T,), then
I7 (1) = F(£) (I] (v), .., I, (1))

Adding equality

* Two-place relation symbol =, with infix
notation, e.g. T,=T,.

e Additional syntactic rule:

00. If T, and T, are terms, then T,= T, 1s an atomic
formula.

e Additional semantic rule:
00. M,gF t,= 1, iff I](1;) equals I.(T,)

Adding sorted variables

* Vx(ANIMATE(x) — BREATH(x)) abbreviated as
Va BREATH(a)

o —dx(INANIMATE(x) A TALK(x)) abbreviated as
- 3i TALK(i)

* Not incorporated into the current fragment.
Some use for this is chapter 3.

Roadmap

* First-Order Logic
— Vocabulary
— First-order models (semantics)
— First-order languages (syntax)
— Truth and Satisfaction

— Adding functions symbols, equality and sorted
variables

* Three inference tasks
— Querying
— Consistency checking
— Informativity checking

Querying Task

Given a model M (, and assignment g) and
a first-order formula ¢, is ¢ satisfied in M
(with respect to g) or not?

* |s querying a task we can compute? Yes, if we fix
what the free variables stand for (i.e., if we spell out
g at least for the variables used) and if we confine

ourselves to finite models.

 Model checker: program that performs this task

Consistency Checking Task

* Aformula ¢ is consistent/satisfiable if it is satisfied in at
least one model.

* Afinite set of formulas {¢,,..., ¢} is consistent/satisfiable

if the formula (¢, A ... A ¢,) is consistent/satisfiable.

Given a first-order formula ¢, is ¢ consistent/
satisfied or inconsistent/unsatisfiable?

Consistency Checking Task

* |s this task computationally decidable? No.
— vast mathematical universe of models

— some satisfiable formulas only have infinite satisfying
models

* But a partial solution can be reached by moving from
a model-theoretic (semantic) perspective to a proof-
theoretic (syntactic) perspective (Chapters 4-5)

Informativity Checking Task

A formula ¢ is valid if it is satisfied in all models given
any variable assignment. F ¢

Valid formulas are uninformative, as they do not rule
out possibilities.

A formula that is not valid is called invalid. f ¢
Invalid formulas are informative, as they rule out

possibilities.

Given a first-order formula ¢,
is ¢ informative/invalid or uninformative/valid?

Informativity Checking Task

* An argument with a finite set of premises ¢, ..., ¢,
and a conclusion is valid if the formula (¢, A ... A
¢,) — ¥ is valid.

 More formally:

Semantic Deduction Theorem:

gy O F W iff F(p; Ao AQ,) — W)

Given an argument u with a finite set of

premises ¢,,..., ¢, and a conclusion 1,
is w informative/invalid or uninformative/valid?

Informativity Checking Task

* Is the informativity checking task computationally
decidable? No, as before.

* But a partial solution can be reached by moving from
a model-theoretic (semantic) perspective to a proof-
theoretic (syntactic) perspective (Chapters 4-5)

Relating
Consistency and Informativity

¢ is consistent/satisfiable iff —¢ is informative/
invalid.

¢ is inconsistent/unsatisfiable iff =@ is
uninformative/valid.

¢ is informative/invalid iff = ¢ is consistent/satisfiable.

¢ is uninformative/valid iff =¢ is inconsistent/
unsatisfiable.

Exercises

* Mandatory: 1.1.1,1.1.3-1.1.5,1.1.7,1.1.10

* Optional: 1.1.6,1.1.11,1.1.17,1.2.1

