Finite-State Technology

Teil IV:

Automaten (2. Teil)

Definition eines ε-NEA

• Ein ε -NEA ist ein Quintupel A = (Q, Σ , δ , q0, F), wobei

Q = eine endliche Menge von Zuständen

 Σ = eine endliche Menge von Eingabesymbolen

q0 = der Anfangszustand

F = eine Menge von Endzuständen (akzeptierende Zustände), wobei F $\subseteq Q$

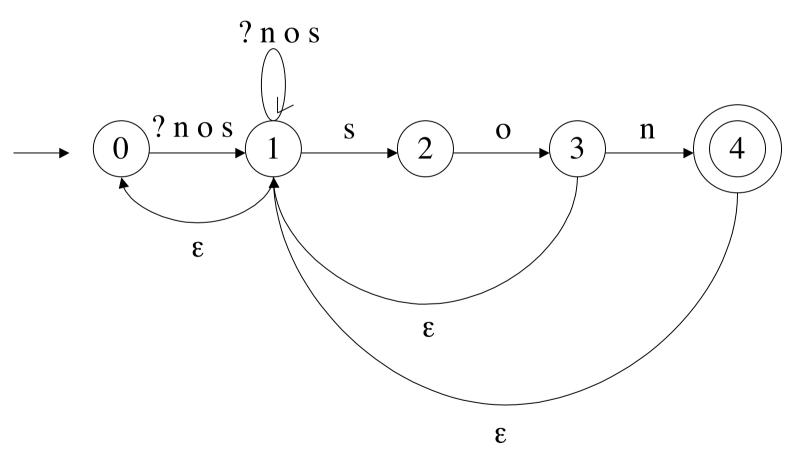
 δ = die Übergangsfunktion nimmt einen Zustand und ein Eingabesymbol aus $\Sigma \cup \{\epsilon\}$ als Argument und gibt eine Teilmenge von Q zurück, also Q × ($\Sigma \cup \{\epsilon\}$) × 2^Q

Beispiel ε-NEA: Übergangstabelle für δ

Input →	?	S	О	n	3
State↓					
→ S0	{S1}	{ S 1}	{ S 1}	{S1}	Ø
S 1	{S1}	{S1, S2}	{S1}	{S1}	{S0}
S2	Ø	{S3}	Ø	Ø	Ø
S 3	Ø	Ø	{S4}	Ø	{S1}
*S4	Ø	Ø	Ø	Ø	{S1}

Frage: Wie sieht das Übergangsdiagramm aus?

Beispiel ε-NEA: Übergangsdiagramm



Dirk Saleschus - Universität Konstanz

ε-Hülle

- Zum Analysieren von Eingaben braucht man die ε-Hülle.
- Definition von ε-Hülle:

Basis: Zustand q ist in ε -Hülle(q) enthalten

Induktionsschritt: Wenn der Zustand p in ε -Hülle(q) enthalten ist und es einen Übergang vom Zustand p zum Zustand r mit der Beschriftung ε gibt, dann ist r in ε -Hülle(q) enthalten

• Im vorigen Beispiel: ε -Hülle(S0) = {S0}; ε -Hülle (S1) = {S1, S2}

Erweiterte Übergangsfunktion

- Basis: $\delta^{\wedge}(q, \epsilon) = \epsilon$ -Hülle(q).
- Induktionsschritt: Angenommen, w ist eine Zeichenreihe xa, wobei a das letzte Symbol von w ist. Außerdem:

$$\delta^{\wedge}(q, x) = \{p_1, p_2, ..., p_k\}$$

$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, ..., r_m\}$$

• Dann gilt:
$$\delta^{\wedge}(q, w) = \bigcup_{j=1}^{m} \epsilon$$
-Hülle $\{r_j\}$.

Beispiel: Analysiere "larsson"

• Basis:

$$\delta^{\wedge}(S0, \epsilon) = \epsilon$$
-Hülle(S0) = {S0}

Beispiel: Analysiere "larsson"

- $\delta(S0, 1) = \{S1\}$
- $\delta^{\wedge}(S0, 1) = \epsilon \text{Hülle}(S1) = \{S0, S1\}$
- $\delta(S0, a) \cup \delta(S1, a) = \{S1\} \cup \{S1\} = \{S1\}$
- $\delta^{\wedge}(S0, la) = \epsilon H\ddot{u}lle(S1) = \{S0, S1\}$
- $\delta(S0, r) \cup \delta(S1, r) = \{S1\} \cup \{S1\} = \{S1\}$
- $\delta^{\wedge}(S0, lar) = \varepsilon H\ddot{u}lle(S1) = \{S0, S1\}$
- $\delta(S0, s) \cup \delta(S1, s) = \{S1\} \cup \{S1, S2\} = \{S1, S2\}$
- $\delta^{(S0, lars)} = \epsilon H\ddot{u}lle(S1) \cup \epsilon H\ddot{u}lle(S2) = \{S0, S1\} \cup \{S2\} = \{S0, S1, S2\}$
- $\delta(S0, s) \cup \delta(S1, s) \cup \delta(S2, s) = \{S1\} \cup \{S1, S2\} \cup \emptyset = \{S1, S2\}$
- $\delta^{(S0, larss)} = \epsilon$ -Hülle(S1) $\cup \epsilon$ -Hülle(S2) = {S0, S1} \cup {S2} = {S0, S1, S2}
- $\delta(S0, o) \cup \delta(S1, o) \cup \delta(S2, o) = \{S1\} \cup \{S1\} \cup \{S3\} = \{S1, S3\}$
- $\delta^{(S0, larsso)} = \epsilon H\ddot{u}lle(S1) \cup \epsilon H\ddot{u}lle(S3) = \{S0, S1\} \cup \{S1, S3\} = \{S0, S1, S3\}$
- $\delta(S0, n) \cup \delta(S1, n) \cup \delta(S3, n) = \{S1\} \cup \{S1\} \cup \{S4\} = \{S1, S4\}$
- $\delta^{(S0, larsson)} = \epsilon H\ddot{u}lle(S1) \cup \epsilon H\ddot{u}lle(S4) = \{S0, S1\} \cup \{S1, S4\} = \{S0, S1, S4\}$

Beispiel: Analysiere "larsson"

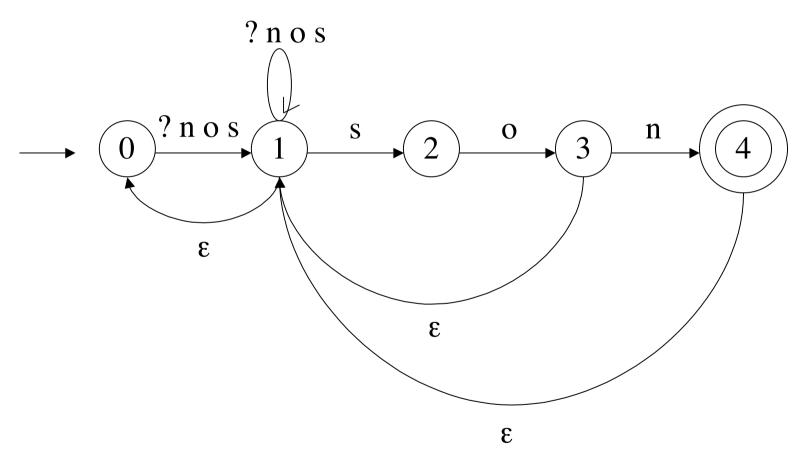
• Die Zeichenreihe wird akzeptiert, wenn $\{S4\} \subseteq F$ zutrifft.

Eliminierung von ε-Übergängen

Informelle Prozedur:

- 1. Bilde die ε-Hülle des Startzustandes.
- 2. Finde für jeden Zustand aus dieser ε-Hülle und für jedes mögliche Symbol den Folgezustand.
- 3. Bilde von diesen Folgezuständen die ε -Hülle.
- 4. Diese ε-Hüllen bilden die neuen Zustände des epsilonfreien NEA.
- 5. Gehe zu Schritt 2 (falls noch nicht der akzeptierende Zustand erreicht ist).

Beispiel. ϵ -NEA -> NEA



Dirk Saleschus - Universität Konstanz

Beispiel: ε-NEA -> NEA

- ε-Hülle des Startzustandes = ε-Hülle(S0) = {S0}.
 S0 ist also der erste Zustand des ε-freien NEA.
- 2. Für S0 finde jeden Folgezustand für jedes Symbol "?, s, o, n". S0:? -> S1; S0:s -> S1; S0:o -> S1; S0:n -> S1
- 3. Bilde die ε -Hülle von S1 = {S0, S1}.
- 4. Dies ist der **zweite** Zustand des ε-freien NEA.
- 5. Gehe zu Schritt 2: Finde für S0 und S1 für jedes Symbol den Folgezustand.

Beispiel: ε-NEA -> NEA

S0, S1:? -> S1 ->
$$\epsilon$$
-Hülle = {S0, S1} (bekannt)

S0, S1:s -> S1, S2 ->
$$\epsilon$$
-Hülle = {S0, S1, S2}

S0, S1:0 -> S1 ->
$$\epsilon$$
-Hülle = {S0, S1} (bekannt)

S0, S1:n -> S1 ->
$$\epsilon$$
-Hülle = {S0, S1} (bekannt)

 $\{S0, S1, S2\}$ ist der **dritte** Zustand des ϵ -freien NEA.

Gehe zu Schritt 2: Finde für {S0, S1, S2} und {S0, S1} für jedes Symbol den Folgezustand.

Beispiel: ε-NEA -> NEA

S0, S1, S2:? -> S1 -> ϵ -Hülle = {S0, S1} (bekannt)

S0, S1, S2:s -> S1, S2 -> ϵ -Hülle = {S0, S1, S2} (bekannt)

S0, S1, S2:0 -> S1, S3 -> ϵ -Hülle = {S0, S1, S3}

S0, S1, S2:n -> S1 -> ϵ -Hülle = {S0, S1} (bekannt)

{S0, S1, S3} ist der vierte Zustand des ε-freien NEA.

Gehe zu Schritt 2 : Finde für {S0, S1, S2}, {S0, S1} und {S0, S1, S3} für jedes Symbol den Folgezustand.

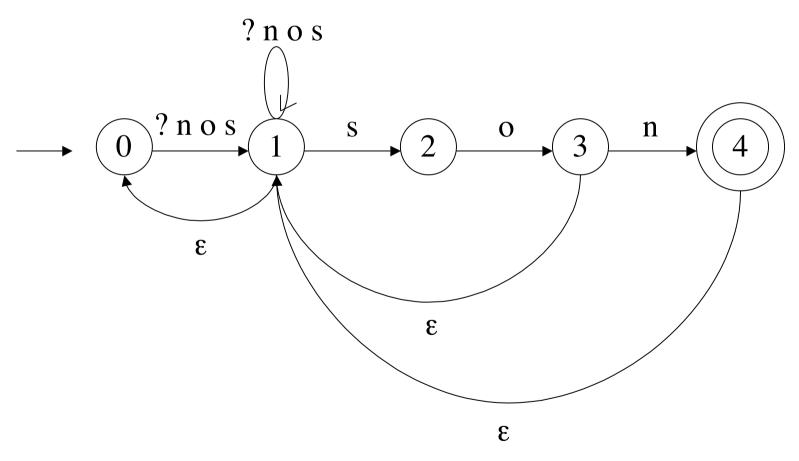
...

Beispiel: ε -NEA -> NEA

	?	S	0	n
->0	0,1	0,1	0,1	0,1
0,1	0,1	0,1,2	0,1	0,1
0,1	0,1	0,1,2	0,1	0,1
0,1,2	0,1	0,1,2	0,1,3	0,1
0,1	0,1	0,1,2	0,1	0,1
0,1,2	0,1	0,1,2	0,1,3	0,1
0,1,3	0,1	0,1,2	0,1	0,1,4
0,1	0,1	0,1,2	0,1	0,1
0,1,2	0,1	0,1,2	0,1,3	0,1
0,1,3	0,1	0,1,2	0,1	0,1,4
0,1,4	0,1	0,1,2	0,1	0,1

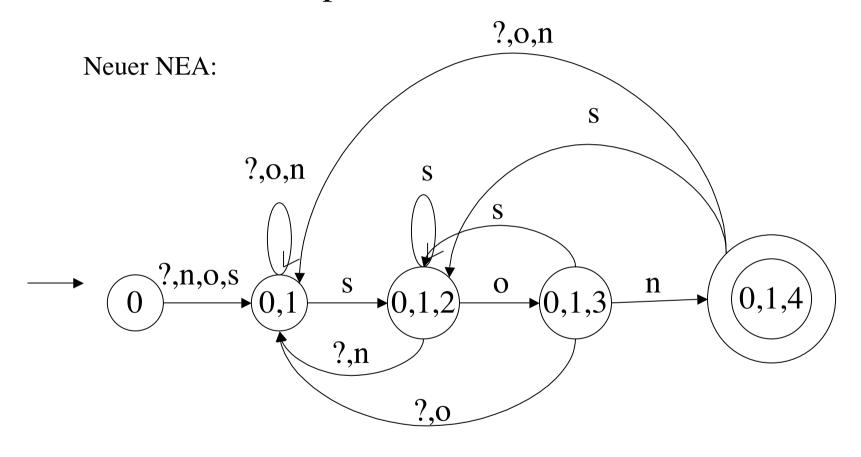
Beispiel: ε -NEA -> NEA

alter ε -NEA:



Dirk Saleschus - Universität Konstanz

Beispiel: ε -NEA -> NEA



- Wir sind jetzt in der Lage, RE's in Automaten umzuwandeln.
- Für jede Sprache L=L(R) für einen regulären Ausdruck R gilt: L = L(E) für einen ε -NEA E.

• Wiederholung: Einfache reguläre Ausdrücke definieren reguläre Sprachen. Sie werden induktiv gebildet aus der Basis und drei Operationen:

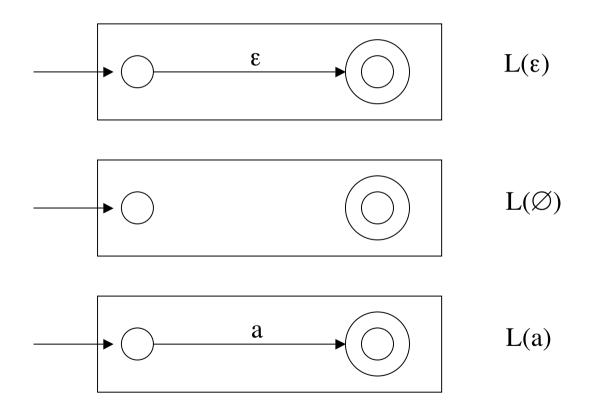
 ε , \emptyset sind reguläre Ausdrücke. $L(\varepsilon) = \{\varepsilon\}$, $L(\emptyset) = \emptyset$. Variablen (meist Großbuchstaben) repräsentieren ein Sprache.

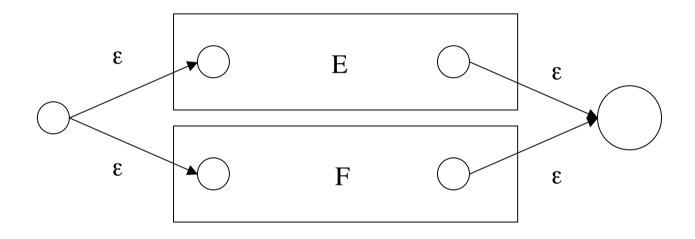
Wenn a ein beliebiges Symbol ist, dann ist a ein RE: $L(a) = \{a\}$.

E+F ist ein regulärer Ausdruck: $L(E + F) = L(E) \cup L(F)$.

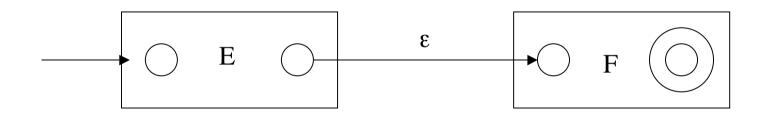
EF ist ein regulärer Ausdruck: L(EF) = L(E)L(F).

Wenn E ein RE ist, dann ist E* ein RE: $L(E^*) = (L(E))^*$.

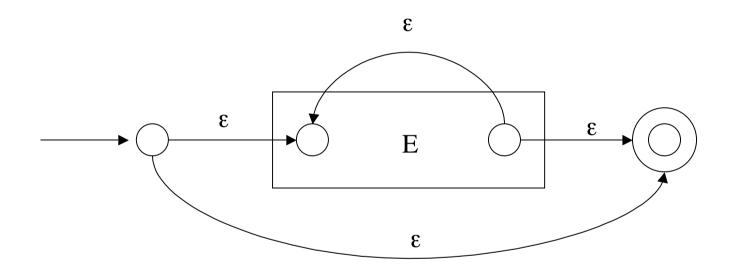




Beispiel Vereinigung: $L(E + F) = L(E) \cup L(F)$

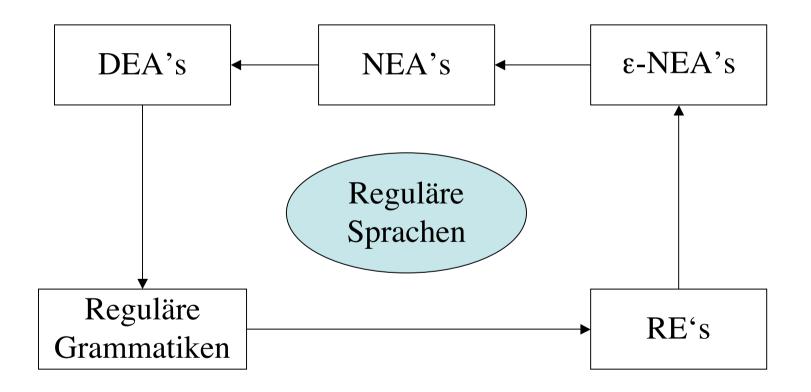


Beispiel Konkatenation: L(EF) = L(E)L(F).



Beispiel Kleene-Iteration: $L(E)^* = (L(E))^*$

Notationen für reguläre Sprachen



Äquivalenz von Zuständen

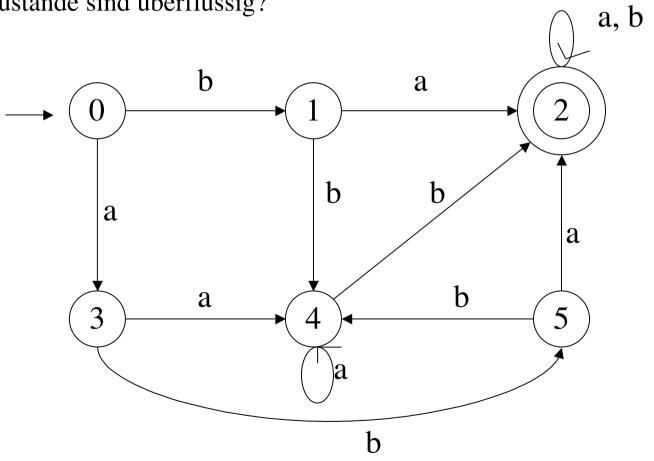
- Die Äquivalenz von Zuständen ist nötig für die Minimierung von Zuständen.
- Definition der Äquivalenz von Zuständen:

Zwei Zustände p und q sind äquivalent, wenn für alle Zeichenreihen w gilt: $\delta^{(p, w)}$ ist ein akzeptierender Zustand genau dann, wenn $\delta^{(q, w)}$ auch ein akzeptierender Zustand ist.

- Mit anderen Worten: Wenn p ein akzeptierender Zustand ist und q nicht, dann ist das Paar {p, q} unterscheidbar.
- Dies kann man mit dem *table-filling*-Algortihmus veranschaulichen.

Äquivalenz von Zuständen: Beispiel

Welche Zustände sind überflüssig?



Dirk Saleschus - Universität Konstanz

Äquivalenz von Zuständen: Beispiel

- Prozedur (informell) zum Ausfüllen der Äquivalenztabelle:
- 1. Notiere jedes Paar, das den akzeptierenden Zustand und einen nichtakzeptierenden Zustand beinhaltet.
- 2. Für die übriggebliebenen Paare: Teste jedes Paar mit jeder möglichen Zeichenreihe. Notiere es in der Tabelle, sobald eine der Zeichenreihen von einem Zustand zum akzeptierenden Zustand führt, zum anderen aber nicht.
- 3. Die leerstehenden Felder in der Tabelle geben die äquivalenten Zustände an.

Äquivalenz von Zuständen: Schritt 1

1					
2	X	X			
3			X		
4			X		
5			X		
	0	1	2	3	4

Äquivalenz von Zuständen: Schritt 2

1	a				
2	X	X			
3	ab	a	X		
4	b	b	X	b	
5	a		X	a	a
	0	1	2	3	4

Äquivalenz von Zuständen: Schritt 2

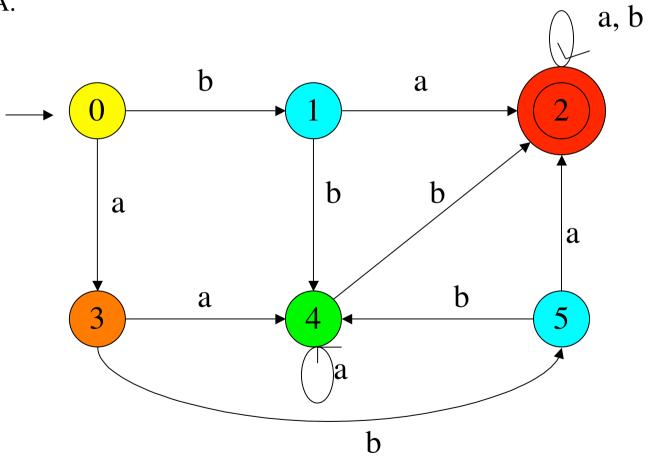
1	X				
2	X	X			
3	X	X	X		
4	X	X	X	X	
5	X		X	X	X
	0	1	2	3	4

Minimierung von Zuständen: Beispiel

- Mit der Gruppierung von äquivalenten Zuständen in Blöcke ist der erste Schritt zur Minimierung von Zuständen getan.
- Die äquivalenten Zustände sind: {1, 5}. Diese bilden die ersten Blöcke.
- Alle anderen Zustände bilden eigene Blöcke: {0}, {2}, {3}, {4}.
- Der neue minimierte Automat hat also nur noch fünf Zustände: {0}, {1, 5}, {2}, {3}, {4}.

Äquivalenz von Zuständen: Beispiel

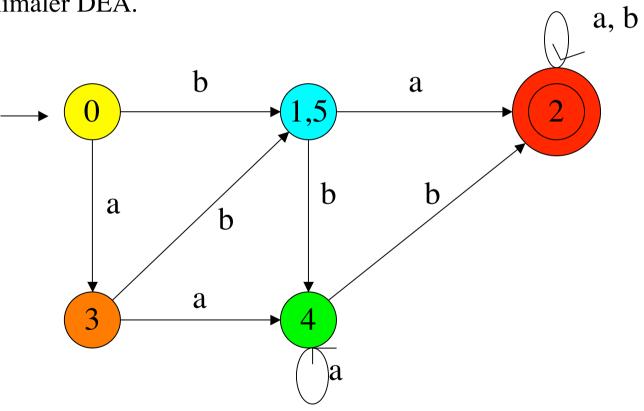
Alter DEA.



Dirk Saleschus - Universität Konstanz

Äquivalenz von Zuständen: Beispiel

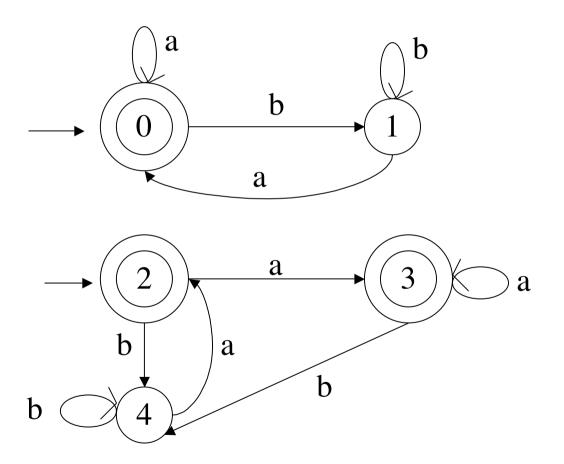
Neuer minimaler DEA.



Äquivalenz von Automaten

- Für jeden DEA gibt es einen äquivalenten DEA, der so wenige Zustände besitzt, wie kein anderer DEA, der dieselbe Sprache akzeptiert.
- Prozedur (informell):
 - a) Nimm zwei Automaten und forme sie in DEA's um.
 - b) Bilde die Vereinigung beider DEA's in einen einzelnen DEA.
 - c) Bilde eine Äquivalenztabelle für diesen erweiterten DEA.
 - d) Wenn die Startzustände der beiden kleineren Automaten in dem erweiterten Automaten äquivalent sind, sind beide Automaten auch äquivalent.
- Beispiel: Sind folgende Automaten äquivalent? Welche Sprache definieren sie?

Äquivalenz von Automaten: Beispiel



Äquivalenz von Automaten: Beispiel

1	X			
→ 2		X		
→3		X	X	
4	X		X	X
	→()	1	2	3

Äquivalenz von Automaten: Beispiel

- Die äquivalenten Zustände können in Blöcke gruppiert werden: {0, 2, 3}, {1, 4}.
- Die Anfangszustände der beiden Automaten waren 0, 2 und 3. Da sie äquivalent sind, sind auch die Automaten äquivalent.

Zusammenfassung

- Wir haben gesehen, wie
 - a) RE's in ε -NEA's umgewandelt werden
 - b) ε-NEA's in NEA's umgewandelt werden
 - c) NEA's in DEA's umgewandelt werden
 - d) DEA's minimiert werden.
- Die Übergangstabellen von DEA's können nun für einen Algorithmus zur Simulation von Automaten benutzt werden.

Literatur

- Beesley/Karttunen (2003:II-III)
- Jurafsky/Martin 2000:2.2
- Partee et al. 1993:17.1
- Roche/Schabes 1997:I
- Hopcroft/Motwani/Ullman (2001)