Pashto second position en(do)clisis and the syntax-prosody interface in LFG

Tina Bögel

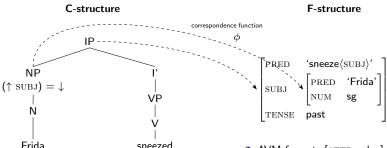
University of Konstanz

Edinburgh, January 2016

This talk

- ightarrow New approach to the syntax-prosody interface in LFG
- ightarrow Sample application to Pashto second position en(do)clitics

TOC:


- A (very) brief introduction to the LFG architecture
- A new proposal to the syntax-prosody interface
- Pashto second position en(do)clisis: the data
- Pashto en(do)clisis and the syntax-prosody interface in LFG

LFG – a brief introduction

- Developed in the 1970s/1980s by Joan Bresnan and Ronald M. Kaplan
- Generative, non-transformational grammar theory
- Original account of LFG assumed two different ways of representing syntactic structure: c(onstituent)-structure and f(unctional)-structure.

3 / 53

Syntax: C(onstituent)— and F(unctional)—structure

syntactic tree-format

 $(\uparrow NUM) = sg$

linear and hierarchical organization of words

 $(\uparrow PRED) = 'Frida' \quad (\uparrow PRED) = 'sneeze \langle SUBJ \rangle'$

 $(\uparrow \text{TENSE}) = \text{past}$

- AVM format: [ATTR value]
- functional representation, predicate-argument structure
- no linear order per se

Lexicon

- Rich and complex structure
- Understood as dynamic component: words are constructed according to internal morphophonological processes
- Output consists of morphologically complete words ("surface representations")
- ⇒ Strong lexicalist hypothesis

Principle of lexical integrity (Bresnan 2001, 92):

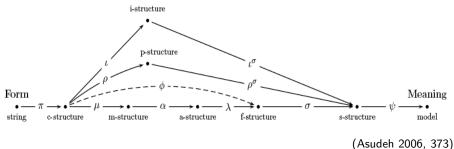
Morphologically complete words are leaves of the c-structure tree and each leaf corresponds to one and only one c-structure node.

Lexicon

- Rich and complex structure
- Understood as dynamic component: words are constructed according to internal morphophonological processes
- Output consists of morphologically complete words ("surface representations")
- ⇒ Strong lexicalist hypothesis

Principle of lexical integrity (Bresnan 2001, 92):

Morphologically complete words are leaves of the c-structure tree and each leaf corresponds to one and only one c-structure node.


```
The lexical entry:
                                              V \quad (\uparrow PRED) = 'sneeze \langle SUBJ \rangle'
                             sneezed
                                                     (\uparrow \text{TENSE}) = \text{past}
                              Frida
                                              N \quad (\uparrow PRED) = 'Frida'
                                                     (\uparrow NUM) = sg
```

Modularity

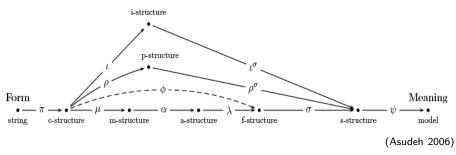
- Separation of different linguistic information is in line with general notion of modularity:
- "Each aspect of linguistic structure is organized according to its own cohesive set of rules and principles" (Dalrymple 2001, 85)
- ightarrow different aspects of linguistic information are not required to be of the same formal type
- ightarrow representation should be determined by the properties of the linguistic information
 - Different representations build up "in parallel" (≠ 'separate')

Overall architecture

In the last decades, several linguistic components have been added:

 located between two vanishing points FORM and MEANING (or phrased differently: comprehension and production)

Intermediate summary


Concluding, the following statements can be made about LFG:

- LFG is a modular framework; its 'structures' represent different types of linguistic information.
- UFG does not assume encapsulated modularity; structures are built up in parallel (overlapping).
- The different types of linguistic information are related via correspondence functions.
- LFG supports the strong lexicalist hypothesis, the 'principle of lexical integrity', which assumes that only fully-formed words enter the syntactic tree.

TOC

- A brief introduction to the LFG architecture
- A new proposal to the syntax-prosody interface
- Pashto second position en(do)clisis: the data
- Pashto en(do)clisis and the syntax-prosody interface in LFG

Grammar with focus on p-structure

- ('Phonological') string is placed with FORM
- ightarrow String instantiates information from each (lexical) item to terminal nodes of c-structure via the correspondence function π
 - ullet P-structure projected off c-structure via ρ (\Rightarrow syntax determines prosody)

Bögel (University of Konstanz)

Problems with this interface position

Problematic with Modularity: How does the phonological information 'keep' until p-structure is reached; how does prosodic phrasing 'keep' until the sentence is uttered?

Problems with this interface position

- Problematic with Modularity: How does the phonological information 'keep' until p-structure is reached; how does prosodic phrasing 'keep' until the sentence is uttered?
- How are differences in linear order accounted for? How can a clitic be syntactically analysed, if it is 'hidden' within another item?

Problems with this interface position

- Problematic with Modularity: How does the phonological information 'keep' until p-structure is reached; how does prosodic phrasing 'keep' until the sentence is uttered?
- How are differences in linear order accounted for? How can a clitic be syntactically analysed, if it is 'hidden' within another item?
- Where does the lexicon come in? Where are the postlexical phonological rules? And how are they positioned in relation to p- and c-structure?

- Language is modular: semantics, syntax, postlexical phonology ...
 - Each module subject to individual constraints and individual vocabulary
 - Question: how do they communicate (and to what extent do they overlap)

- Language is modular: semantics, syntax, postlexical phonology ...
 - Each module subject to individual constraints and individual vocabulary
 - Question: how do they communicate (and to what extent do they overlap)
- Any act of language is a process between two poles:

• The 'direction' is important (especially at the interface between modules)

- Language is modular: semantics, syntax, postlexical phonology ...
 - Each module subject to individual constraints and individual vocabulary
 - Question: how do they communicate (and to what extent do they overlap)
- Any act of language is a process between two poles:

• The 'direction' is important (especially at the interface between modules)

• Always with a view to developing a possible computational application

- Language is modular: semantics, syntax, postlexical phonology ...
 - Each module subject to individual constraints and individual vocabulary
 - Question: how do they communicate (and to what extent do they overlap)
- Any act of language is a process between two poles:

• The 'direction' is important (especially at the interface between modules)

- Always with a view to developing a possible computational application
- Allow for many different types of information to be processed

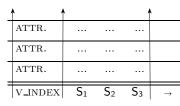
New proposal

- ightarrow Allows for a modular architecture: c- and p-structure can be 'interfaced' through string and lexical look-up
- → Much closer to models of speech production

The integration of p-structure into LFG: requirements

Integration of phonological/prosodic information into LFG requires:

- Extension of the lexicon to include lexical phonological information: the multidimensional lexicon
- New representation of p-structure: the p-diagram
- **⑤** Formalization of the syntax–prosody interface:
 - transfer of structure
 - transfer of vocabulary
- ⇒ The resulting interface was applied to a number of challenging phenomena: German case ambiguities (comprehension), Swabian clitics/n-insertion, Degema en(do)clisis, Pashto second position en(do)clisis (production)

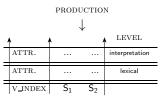

1. Multidimensional lexicon

concept	s(yntactic)-form			p(honological)-form		
SNEEZE	sneezed	V	$(\uparrow PRED) = 'sneeze \langle SUBJ \rangle'$	P-FORM	[sni:zd]	
			$(\uparrow \text{ TENSE}) = past$	SEGMENTS	/ s n i: z d/	
				METRICAL FRAME	$('\sigma)_{\omega}$	

- Modular: strict separation of module-related information
- ightarrow each lexical dimension can only be accessed by the related module of language
 - Translation function: Once a dimension is triggered, the related dimensions can be accessed as well and the information can be instantiated to the related modules
 - Surface representation: fully fledged forms, but dynamic generation is assumed

2. The P-diagram

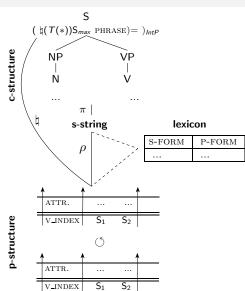
- Compact model imitating the linear nature of the speech signal over time
- Structured syllable-wise ...
- Each (horizontal) syllable receives a (vertical) feature vector which includes several dimensions
- → Syllable associated with a number of values referring to a number of attributes
- → Easily accessed (from a computational perspective)


Three levels:

- lexical: Information gathered from the lexical entry
- 2 signal: Information directly found in the signal
- interpretation: Calculated on the basis of lexical, signal, and/or interpretation information

2. The P-diagram - levels and possible attributes

†	1			1	LEVEL
PHRASING	ω($)_{\omega}$	INTERPRETATION
SEMITDIFF	2	-3	-4	2	+
ToBI			L*		
BREAK_IND.				1	
F0	192	170	158	166	SIGNAL
DURATION	0.19	0.15	0.25	0.2	\
LEX_STRESS			prim		LEXICAL
LEX_TONE	Н	!H	L	Н	+
VALUE	/ə n/	/ı g/	/z a m/	/p I/	
V_INDEX	S ₁	S ₂	S ₃	S ₄	\rightarrow


The P-diagram in P-structure

- Q
- postlexical phonology
- - COMPREHENSION

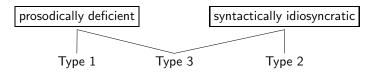
- P-structure always has an input and an output
- → input and output can be homogeneous - but might also be completely different
- $\begin{tabular}{ll} \rightarrow A set of postlexical phonological rules is applied \end{tabular}$
- SIGNAL level is already part of the phonology—phonetics interface
- Output of p-structure in production: syntactic, lexical, and postlexical phonological information
- → many other influencing factors can be assumed!! (i-structure, frequency, size, ...)

3. Transfer of information at the syntax-prosody interface

- Transfer of vocabulary: ρ Morphosyntactic/phonological information on lexical elements is exchanged via the multidimensional lexicon
- Transfer of structure: $\natural (\equiv \rho(\pi^{-1}))$ Information on syntactic and prosodic grouping is exchanged (higher constituents of the prosodic hierarchy).
- Seemplary c-structure annotation: $\sharp(T(*))S_{max}$ PHRASE)= \rbrace_{IntP}
- Underlying prosodic theory roughly following Selkirk (2011)'s match theory

19 / 53

Intermediate summary of the syntax-prosody interface


- The P-diagram is a compact and flexible representation of p-structure
- → combination with postlexical phonological rules allows representation of a great variety of processes
- Transfer at the interface between syntax and p-structure is two-fold:
 - transfer of vocabulary (through the multidimensional lexicon)
 - transfer of structure
- Applicable for models of production as well as comprehension

TOC

- A brief introduction to LFG
- A new proposal to the syntax-prosody interface
- Pashto second position en(do)clisis
- Pashto en(do)clisis and the syntax-prosody interface in LFG

Some general notions on clitics

Anderson (2005)'s three-way distinction:

In LFG (and elsewhere) clitics are:

- ordinary lexical items, form independent terminal nodes in the syntactic tree
- prosodically deficient (in most cases), have to be attached to a host

Brief definition of endoclitics and second position clitics:

- second position clitics (2P): 'second' mostly refers to position after first word or the first syntactic XP constituent, for prosodic or syntactic reasons (Halpern 1995)
- *endoclisis*: clitic is positioned within the stem of the host; a challenge for the concept of lexical integrity! And a very rare phenomenon.

Untangling 'Pashto second position en(do)clisis'

Pashto:

- → Eastern Iranian language, ca. 50 Million speakers in Afghanistan/Pakistan
- ightarrow Data presented here mainly from Tegey (1977) and native speaker N. Rehman

'	Weak Pronoun	Num.&Pers.	Modal	Translation	Adverbial	Translation
	me	1. Sg	ba	will, should	хо	really
	de	2. Sg	de	should, let	no	then
	ye	3. Sg				
	am / mo	1. Pl				
	am / mo	2. PI				
	ye	3. PI				

Expected to have functional scope over the whole sentence (daughters of S).

If more than two enclitics cooccur, they are placed in a fixed template (CCL).

Syntactic constraints

- \rightarrow SOV (Verbal complex (VC) is always final)
- \rightarrow Assume a flat syntactic structure (all XPs as immediate daughters of S)
- (2) [angur]_{NP} = ye rαwṛə grapes he brought 'He brought grapes.'
- (3) $[xuš\alpha l \text{ aw patang}]_{NP} = \mathbf{ba} = \mathbf{ye} \text{ dər ta } r\alpha wri Koshal and Patang will it you to bring 'Koshal and Patang will bring it to you.'$
 - *xuš α l =**ba** =**ye** aw patang dər ta r α wṛi
- (4) $[layl\alpha \ na]_{PP} = \mathbf{de} \ \alpha xistə$ (*layl $\alpha = \mathbf{de} \ na \ \alpha xistə$) Layla from you buy 'You were buying it from Layla.'

Syntactic constraints

- (5) [aga səl kaləna x α ysta peğla aw loy təgay alək]_{NP} =**me** nən by α wəlida that 20- year pretty girl and big thirsty boy l today again saw 'I saw that pretty 20-year old girl and the big thirsty boy again today.'
- (6) [tor =me wəlidə] magar [spin =me wə nə lidə]
 Tor I saw but Spin I PERF not saw
 'I saw Tor, but I didn't see Spin.'

It can be concluded:

- Pashto 2P enclitics are clause-bound
- Always placed after the first syntactic constituent
- The size of that constituent does not matter
- → Already difficult to find a common prosodic host but do we need one?

Prosodic constraints

- (7) $r\alpha$ ta pe $g\alpha$ nḍá =**de** me for by_him sew you 'You were having him sew it for me.'
- → 2P clitics cannot be reduced to syntactic constraints
- \rightarrow can only occur after stressed elements
- ⇒ But: Finding a common prosodic constituent for all cases is impossible

Prosodic constraints

- (7) $r\alpha$ ta pe $g\alpha$ nḍə́ =**de** me for by_him sew you 'You were having him sew it for me.'
- \rightarrow 2P clitics cannot be reduced to syntactic constraints
- \rightarrow can only occur after stressed elements
- ⇒ But: Finding a common prosodic constituent for all cases is impossible
- \Rightarrow Adding to that problem: en(**do**)clisis

Endoclisis

- Pashto is an argument-dropping language
- \rightarrow sentences can consist of only a verb and a 2P clitic
 - Endoclisis in the context of an aspect-determined stress alternation
 - (8a) imperfective: (8b) perfective: $takw\alpha h \delta = me$ $tak\alpha h \delta = me$
- ightarrow The 2P enclitic does not only change its linear position, but 'moves' *into* the stem of the host \Rightarrow *endoclitic*
- ⇒ With respect to the verbal hosts, three classes can be distinguished:

27 / 53

Class I: 'Monomorphemic' verbs

```
(9a) imperfective (9b) perfective
təxnawəla =me wə =me təxnawəla (*wətəxnawəla =me)
tickle I PERF I tickle
'I was tickling (her).' 'I tickled (her).'
```

Perfective aspect formed with perfective prefix wa

- → Receives main stress
- ⇒ The clitic is placed after the stressed prefix

Class I: The a-initial verbs

- Form perfective with wa-prefix
- Can have alternating stress in the imperfective

```
(10a) imperfective: (10b) imperfective: ağustə́ =me = me ğustə wear = me wearı = me il was wearing it.'
```

- Indication that the important factor is not the aspectual feature, but rather the position of stress
- Endoclisis denial: /a/ as separate clitic/prefix from a diachronic perspective(?)
- → Not true for all a-initials, but reanalysis?
- → No longer true from a synchronic perspective

Class II: 'Bimorphemic' verbs

Majority of verbs in this class consist of a derivational prefix and a root.

- Perfective formed via stress shift to the prefix
- Clitic in perfective placed after the stressed prefix

Class II: 'Bimorphemic' verbs

Majority of verbs in this class consist of a derivational prefix and a root.

- Perfective formed via stress shift to the prefix
- Clitic in perfective placed after the stressed prefix

However:

Class II: 'Bimorphemic' verbs

Majority of verbs in this class consist of a derivational prefix and a root.

- Perfective formed via stress shift to the prefix
- Clitic in perfective placed after the stressed prefix

However:

Also a group of verbs which do not contain an identifiable prefix/root

(12a) imperfective (12b) perfective b
$$\alpha$$
ylódə =me b $\dot{\alpha}$ y =me lodə lose lose₁ lose₂ 'I lost (it).'

Class III: Complex predicates

Complex predicates: combination of adjectives/adverbs/nouns and light verbs

- ightarrow if stress on the light verb: clitic follows the complex predicate
- ightarrow if stress on first part: clitic positioned preceding the light verb

perfective:

(13) póx = me kə cook I do 'I cooked (it).'

Intermediate summary

- Clitics seem to follow first syntactic constituent.
- ightarrow size does not matter, cannot be interrupted
- If that syntactic constituent is destressed, clitics are placed after the next constituent carrying stress.
- In verb-initial sentences, the clitic is placed according to an aspect-caused stress shift
- → after the verb in the imperfective (enclitic)
- → within the verb in the perfective (endoclitic)

Intermediate summary

- Clitics seem to follow first syntactic constituent.
- → size does not matter, cannot be interrupted
- If that syntactic constituent is destressed, clitics are placed after the next constituent carrying stress.
- In verb-initial sentences, the clitic is placed according to an aspect-caused stress shift
- → after the verb in the imperfective (enclitic)
- → within the verb in the perfective (endoclitic)

Resulting prosodic range: from several phonological phrases to stressed syllables.

essentially:

size does not matter, but stress does, and while verbs can be interrupted, other syntactic constituents cannot?

Proposed solution

- Pashto 2P clitics are first and foremost placed according to syntactic constraints.
- ightarrow In the position after the first syntactic constituent
- ② If syntactically (and prosodically) stranded in clause-initial position
- → postlexical phonological rephrasing (prosodic inversion) ensures that the 2P enclitic has a host.

Proposed solution

- Pashto 2P clitics are first and foremost placed according to syntactic constraints.
- ightarrow In the position after the first syntactic constituent
- ② If syntactically (and prosodically) stranded in clause-initial position
- → postlexical phonological rephrasing (prosodic inversion) ensures that the 2P enclitic has a host.
- Closer look at the syntactic and prosodic requirements... and the crucial example:
- (14) $r\alpha$ ta pe $g\alpha$ nd9 = **de** me for by_him sew you 'You were having him sew it for me.'

Preverbal clitics

Inital 'unstressed' elements are part of a second group of clitics with a corresponding strong form:

ightarrow construction with a **strong** oblique pronoun: mlpha (15a) tor $[\underline{m}\alpha \ \underline{sara}]$ der \dot{x} ə $[pezani]_{VC}$ Tor me with very well acquainted 'Tor is very well acquainted with me.'

Preverbal clitics

Inital 'unstressed' elements are part of a second group of clitics with a corresponding strong form:

- ightarrow construction with a **strong** oblique pronoun: $m\alpha$ (15a) tor $[\underline{m\alpha} \ \underline{sara}]$ der \dot{x} ə $[pezani]_{VC}$ Tor me with very well acquainted 'Tor is very well acquainted with me.'
- ightarrow construction with a **weak** oblique pronoun: rlpha (15b) tor der xə $[\underline{rlpha} \ \underline{sara}]$ [pezani] $_{
 m VC}$ Tor very well me with acquainted 'Tor is very well acquainted with me.'
- $\,$ Moved to the position in front of the verb for no apparent prosodic reason!

34 / 53

Preverbal clitics

Inital 'unstressed' elements are part of a second group of clitics with a corresponding strong form:

- ightarrow construction with a **strong** oblique pronoun: $m\alpha$ (15a) tor $[\underline{m\alpha} \ \underline{sara}]$ der \dot{x} ə $[pezani]_{VC}$ Tor me with very well acquainted 'Tor is very well acquainted with me.'
- ightarrow construction with a **weak** oblique pronoun: rlpha (15b) tor der ightarrow $[\underline{rlpha}$ $\underline{sara}]$ [pezani] $_{
 m VC}$ Tor very well me with acquainted 'Tor is very well acquainted with me.'
- ightarrow Moved to the position in front of the verb for no apparent prosodic reason!
- \Rightarrow **Assumption**: *Syntactic* clitic, syntactically attaching to the constituent which ensures sentential scope: the VC [r α sara pezani]_{VC}
- ⇒ **Consequence**: There will never be a completely unstressed constituent preceding the verbal complex!

Syntactic analysis (LFG)

(Simplified) syntactic analysis very straightforward:

$$S \longrightarrow [\{XP \ 2P \ XP^* \mid 2P\} \ VC] \qquad (where \ XP = \{NP \mid PP \mid AP \mid AdjP\})$$

Two possible constructions:

- XP 2P XP* VC
- → no further rearrangements necessary
- 2P VC
- → Enlitics in clause-inital position require repositioning (via prosodic inversion)

Prosodic inversion

Main question: What is the 'landing place' of the 2P clitic?

- ⇒ Answer to that with evidence from several phonological processes:
 - vowel coalescence
 - vowel harmony
 - initial /k/-deletion

(16) VC-external clitic:

tə = \mathbf{ye} [w α xla] $_{\mathrm{VC}}$ you it PERF.buy 'You buy it.'

(*wə axla)

(16) VC-external clitic:

tə = \mathbf{ye} [w α xla] $_{\mathrm{VC}}$ you it PERF.buy 'You buy it.'

(*wə axla)

(17) VC-internal clitic:

(16) VC-external clitic:

```
tə =\mathbf{ye} [w\alphaxla]_{\mathrm{VC}} (*wə axla) you it PERF.buy 'You buy it.'
```

(17) VC-internal clitic:

```
[ w \alpha = \mathbf{ye} \times \mathsf{la} ]_{\mathrm{VC}} PERF.buy<sub>1</sub> it buy<sub>2</sub> 'Buy it.'
```

(18) Across (prosodic) word boundaries:

```
kor \mathrm{Sp}\alpha\mathrm{n}\mathrm{ə})_{\omega} _{\omega}([\mathrm{axli}]_{\mathrm{VC}} (*\mathrm{Sp}\alpha\mathrm{n}\alpha\mathrm{xli}) house shepherd buys 'The shepherds are buying the house.'
```

(16) VC-external clitic:

```
tə = \mathbf{ye} [w\alphaxla]_{\mathrm{VC}} (*wə axla) you it PERF.buy 'You buy it.'
```

(17) VC-internal clitic:

```
[wlpha = ye xla]_{VC}
PERF.buy<sub>1</sub> it buy<sub>2</sub>
'Buy it.'
```

(18) Across (prosodic) word boundaries:

```
kor \mathrm{\breve{s}p}\alpha\mathrm{n}\mathrm{ə})_{\omega}~_{\omega}([\mathrm{axli}]_{\mathrm{VC}} (*\mathrm{\breve{s}p}\alpha\mathrm{n}\alpha\mathrm{xli}) house shepherd buys 'The shepherds are buying the house.'
```

- → vowel coalescence within the prosodic word
- ightarrow postlexical process also occurs with negative marker which is a separate syntactic item

Regressive vowel harmony: /i/ and /u/ raise mid-vowels /o/ and /e/ to high.

Regressive vowel harmony: /i/ and /u/ raise mid-vowels /o/ and /e/ to high.

(*de)

(19) applies to 2P clitics:

$$[wə = di guri]_{VC}$$
PERF should see

'He should see him.'

Regressive vowel harmony: /i/ and /u/ raise mid-vowels /o/ and /e/ to high.

(19) applies to 2P clitics: $[\text{wə} = \text{di} \quad \text{guri}]_{\text{VC}} \qquad (\text{*de})$ PERF should see 'He should see him.'

(20) applies to preverbal clitics: [wər b α ndi (*b α nde) xi ζ u] $_{\rm VC}$ it on step 'We are stepping on it.'

Regressive vowel harmony: /i/ and /u/ raise mid-vowels /o/ and /e/ to high.

(19) applies to 2P clitics:

```
[wə = di \quad guri]_{VC} (*de)
PERF should see
'He should see him.'
```

(20) applies to preverbal clitics:

```
[wər b\alphandi (*b\alphande) xi\zetau]<sub>VC</sub> it on step 'We are stepping on it.'
```

(21) Does not apply to VC-external 2P clitics:

```
\begin{array}{lll} \mbox{patang} = & \mbox{me} \ [\mbox{wini}]_{\rm VC} & \mbox{(*mi)} \\ \mbox{Patang me} & \mbox{sees} \\ \mbox{'Patang sees me.'} & \mbox{} \end{array}
```

38 / 53

Regressive vowel harmony: /i/ and /u/ raise mid-vowels /o/ and /e/ to high.

(19) applies to 2P clitics:

```
[wə = \operatorname{di} guri]<sub>VC</sub> (*de)
PERF should see
'He should see him.'
```

(20) applies to preverbal clitics:

```
[wər b\alphandi (*b\alphande) xi\zetau]_{\rm VC} it on step 'We are stepping on it.'
```

(21) Does not apply to VC-external 2P clitics:

```
\begin{array}{lll} \text{patang} & = & \text{me} \; [\text{wini}]_{\text{VC}} & \text{(*mi)} \\ \text{Patang me} & \text{sees} & \\ \text{'Patang sees me.'} & & \end{array}
```

(22) does not apply between two prosodic words:

```
xe)_{\omega} \omega (wuxe good camels 'Good female camels'
```

Vowel harmony II

- **1** VH applies to all word categories if the phonological context is given.
- Within the verbal complex, VH spreads to both groups of clitics.
- VH cannot cross the boundary between two lexically stressed words (two individual prosodic words); i.e., vowel harmony is not restricted by the phonological phrase.
- VH cannot spread to a 2P clitic that is outside of the verbal complex, even if it is directly preceding it.

Conclusion: can be assumed that the verbal complex itself forms one prosodic word, including the main verb and both types of clitics.

Class III complex predicates: light verbs starting with /k/:

Class III complex predicates: light verbs starting with /k/:

In the imperfective: (stress on light verb)

(23) First component ends in a vowel:

asad ğanəm [wobə-**k**awi] $_{
m VC}$ Asad wheat water do

'Asad was watering the wheat.'

Class III complex predicates: light verbs starting with /k/:

In the imperfective: (stress on light verb)

(23) First component ends in a vowel:

asad ğanəm [wobə- \mathbf{k} awi] $_{\mathrm{VC}}$ Asad wheat water do 'Asad was watering the wheat.'

(24) First component ends in a consonant:

asad ğanəm [tit-∅awi]_{vc} Asad wheat spread do 'Asad was spreading the wheat.' (*tit-kawi)

Class III complex predicates: light verbs starting with /k/:

In the imperfective: (stress on light verb)

(23) First component ends in a vowel:

asad ğanəm [wobə- \mathbf{k} awi] $_{\mathrm{VC}}$ Asad wheat water do 'Asad was watering the wheat.'

(24) First component ends in a consonant:

asad ğanəm $[tit-\varnothing awi]_{VC}$ (*tit-kawi) Asad wheat spread do 'Asad was spreading the wheat.'

In the perfective: (stress on initial component)

(25) Deletion never occurs:

[dzhobəl **k**-em] $_{\rm VC}$ injured do 'I injure...'

Assumption: Some boundary prevents the deletion

Prosodic inversion – the landing place

What is the boundary?

Prosodic inversion – the landing place

What is the boundary?

• Can't be a 'real' prosodic word boundary $)_{\omega}(_{\omega}$ or a foot, if analysis is to be true for all other verb classes as well – VC and VH could not apply or would overgenerate.

Prosodic inversion – the landing place

What is the boundary?

- Can't be a 'real' prosodic word boundary $)_{\omega}(_{\omega}$ or a foot, if analysis is to be true for all other verb classes as well VC and VH could not apply or would overgenerate.
- **Solution:** nested prosodic word $((x)_{\omega} x)_{\omega}$
- → strong enough to restrict /k/-deletion
- → weak enough to let processes like vowel harmony pass

A note on domain assignment

If assuming that VC as a whole receives prosodic word status:

- **①** Each stressed item receives prosodic word status: $(x \times (x)_{\omega} \times x)_{\omega}$
 - → problematic if class III light verb receives prosodic word status in the imperfective: k-deletion would again be blocked, but this is not the case

A note on domain assignment

If assuming that VC as a whole receives prosodic word status:

- **Q** Each stressed item receives prosodic word status: $(x \times (x)_{\omega} \times x)_{\omega}$ \rightarrow problematic if class III light verb receives prosodic word status in the imperfective: k-deletion would again be blocked, but this is not the case
- **2** Each stressed item forms a prosodic word boundary to its right: $((x \times x)_{\omega} \times x)_{\omega}$

	construction	example
1	$((wm{\circ})_\omega = \mathbf{d}\mathbf{i} \; guri)_\omega$	after perfective prefix (VH)
1	$((w\alpha)_\omega = ye \times la)_\omega$	after perfective prefix (VC)
2	$((\dot{t}el)_{\omega} = \mathbf{me} \ w\alpha ha)_{\omega}$ after stressed part of verb	
3	$((rlpha\ ta\ pe\ glphandi)_\omega = de)_\omega$	after verb and preverbal clitics
4	$((r\alpha \text{ ta pe w}\acute{\bullet})_{\omega} = \mathbf{de} \ \mathbf{g}\alpha \mathbf{n}\dot{\mathbf{q}}\grave{\bullet})_{\omega}$	after perfective prefix and preverbal clitic

A note on domain assignment

If assuming that VC as a whole receives prosodic word status:

- **Q** Each stressed item receives prosodic word status: $(x \times (x)_{\omega} \times x)_{\omega}$ \rightarrow problematic if class III light verb receives prosodic word status in the imperfective: k-deletion would again be blocked, but this is not the case
- **Q** Each stressed item forms a prosodic word boundary to its right: $((x \times x)_{\omega} \times x)_{\omega}$

	construction	example
1	$((wm{\circ})_\omega = \mathbf{d}\mathbf{i} \; guri)_\omega$	after perfective prefix (VH)
1	$((w\alpha)_\omega = ye \times la)_\omega$	after perfective prefix (VC)
2	$((\dot{t} \dot{e} ert)_\omega = me \ w lpha h ə)_\omega$	after stressed part of verb
3	$((rlpha\ ta\ pe\ glphand\acute{\bullet})_\omega = de)_\omega$	after verb and preverbal clitics
4	$((r\alpha \text{ ta pe w\'e})_{\omega} = \mathbf{de} \text{ g}\alpha n\dot{q}e)_{\omega}$	after perfective prefix and preverbal clitic

Prosodic Inversion: Within the verbal complex in Pashto, a 2P clitic is placed after the first prosodic word.

Summing up

- Pashto 2P clitics are subject to both, syntactic and prosodic constraints.
- ② If there is a preceding syntactic constituent, the (syntactic) 2P placement is always sufficient:
- ightarrow There are never unstressed syntactic constituents preceding the 2P clitics
- If syntactically and prosodically stranded in a phrase-inital position, postlexical prosodic inversion ensures correct prosodic placement
- ightarrow The 2P clitic is placed after the first prosodic word
- As for the analysis: straightforward implementation at the syntax-prosody interface in LFG

TOC

- A brief introduction to LFG
- A new proposal to the syntax-prosody interface
- Pashto second position en(do)clisis
- Pashto en(do)clisis and the syntax-prosody interface in LFG

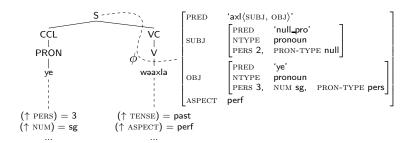
LFG analysis at the syntax \rightarrow prosody interface

- (26) $w\alpha = \mathbf{ye} \times la$ PERF.buy₁ it buy₂
 '(You) buy it.'
- \rightarrow verb-inital perfective construction
 - part of the *prosodic* placement of 2P clitics
 - ② a-initial verb axla marks the perfective aspect with the prefix wa- (class I)
 - two postlexical phonological processes: vowel coalescence and prosodic inversion

Corresponding syntactic rule:

$$S \longrightarrow ... [\{XP \ CCL \ XP* \mid \textbf{CCL} \} \ \textbf{VC}]$$

... where CCL stands for 'clitic cluster'



1. Lexical entries

s-form			p-form		
wə-axla V	(↑ PRED)	$=$ 'axl $\langle SUBJ, OBJ \rangle$ '	P-FORM	[wə́axla]	
	$(\uparrow \text{TENSE})$	= past	SEGMENTS	/wəaxla/	
	(† ASPECT)	= perf	METR. FRAME	$^{\shortmid}\sigma)_{\omega}\sigma\sigma$	
ye PRON	(↑ PRED)	= 'ye'	P-FORM	[ye]	
	(↑ PERS)	= 3	SEGMENTS	/y e/	
	(↑ NUM)	= sg	METR. FRAME	$=\sigma$	
	(↑ CL-TYPE)	= 2P			

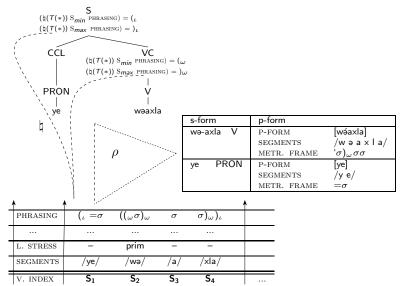
C- and F-structure

C- and F-structure representation of $w\alpha$ ye xla 'Buy it':

- F-structure representation shows the dropped subject argument ('null_pro')
- C-structure: only includes CCL and VC as immediate daughters of S
- \rightarrow CCL node containing the 2P clitic = ye stranded clause-initially
- ⇒ condition for prosodic 2P clitic placement is created

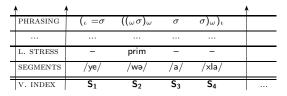
2. Transfer of structure

S: projects an intonational phrase


VC: projects a prosodic word

$$\begin{array}{c} \text{VC} \\ (\natural(T(*)) \; \mathrm{S}_{\textit{min}} \; \mathrm{PHRASING}) = (\omega \\ (\natural(T(*)) \; \mathrm{S}_{\textit{max}} \; \mathrm{PHRASING}) =)_{\omega} \end{array}$$

CCL: does not project structural information to p-structure


Transfer of structure and vocabulary: ye wəaxle

◆□▶ ◆□▶ ◆≣▶ ◆≣▶ ■ り९@

Postlexical phonological rules

input p-structure

- \circlearrowleft vowel coalescence: $\exists \mathsf{a} \longrightarrow \alpha \ / \ (\omega \ ?^* \ _ \ ?^* \)\omega$
- \circlearrowleft prosodic inversion: $(\iota = \sigma + (\sigma =)^* \omega \longrightarrow (\iota (\sigma =)^* \omega = \sigma +$

†				1
PHRASING	$(_{\iota} ((_{\omega}\sigma)_{\omega}$	$=\sigma$	$\sigma)_{\omega})_{\iota}$	
L. STRESS	prim	_	-	
SEGMENTS	/wlpha/	/ye/	/xla/	
V. INDEX	S ₁	S2	S₃	

output p-structure:

 \Rightarrow w α ye xla

The output of p-structure

- Combination of syntactic structure, lexical information, and postlexical phonological rules from the perspective of production
- Linear order of p-structure output does not have to be congruent to the syntactic linear order!! (Prosody has the 'last word')
- Note on comprehension: The processes described in this section from the perspective of production are completely reversible!

Summary

Main goal: Provide a 'road map' which allows the integration of lexical and postlexical phonology and prosody into LFG

- new representation of p-structure: the p-diagram
- extension of the lexicon to include phonological information
- transfer of information between c- and p-structure on two levels:
 - transfer of vocabulary
 - transfer of structure
- modular: each module with separate processes and vocabulary, no extra formal power is needed
- reversible: applicable to production and comprehension
- can be implemented computationally
- ⇒ analysis of challenging phenomena like Pashto 2P en(do)clisis now possible at the syntax− prosody interface

Thank you!

... questions, comments...?