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ABSTRACT

The Smooth Signal Redundancy hypothesis proposes
that recognition likelihood can come from two
sources: language redundancy (e.g. recognition
likelihood from familiarity and predictability based
on syntactic, pragmatic, and semantic factors) and
acoustic redundancy, i.e. acoustic salience from
parameters such as duration, hyperarticulation and
fundamental frequency. The hypothesis proposes that
speakers manipulate acoustic salience to distribute
the likelihood of word recognition evenly throughout
an utterance. Previous research suggests that words
with a high level of language redundancy have
reduced acoustic salience, such as shorter duration
and reduced vowels. This study focuses on f0
values, and investigates their relationship with lexical
frequency, together with bigram (verb-adjective or
adjective-noun) frequency and the ratio between
these two bigram frequencies. Results from a
carefully controlled experiment with quadruplets
of minimal pairs indicate that redundancy may
bring changes in fundamental frequency in English;
however, further investigation is needed to reach a
more definitive conclusion.
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1. INTRODUCTION

In order to achieve efficient communication, speakers
manipulate acoustic salience based on how redundant
given linguistic units are in discourse [1]. Language
redundancy encompasses a range of pragmatic,
lexical, syntactic, and semantic factors. Acoustic
salience refers to segment duration and spectral
properties associated with hyperarticulation, as well
as to acoustic properties associated with more
salient prominence markers and stronger prosodic
boundaries, including f0. Language redundancy
correlates inversely with acoustic salience, so that
the more redundant the linguistic item, the less
acoustically salient it is, and vice versa [1, 2, 3, 4].

For instance, a speaker might highlight a rare or
unexpected word (i.e., less redundant) by making
it longer and/or by making it stand out in the speech
stream through more pronounced boundary markings
[5]. Since acoustic salience varies inversely with
language redundancy, the information conveyed in
an utterance is distributed more evenly, thereby
maximising its likelihood of recognition.

While previous research suggests robust effects of
language redundancy on duration measures [1, 6, 7],
much less is known about its local effects on f0 (but
see [4]). The current study tests the extent to which
speakers manipulate f0 on strings of words that differ
in their language redundancy profile. Given that
f0 movement is one of the acoustic cues English
speakers use to cue prominence via intonation
contours (e.g., [8]), the Smooth Signal Redundancy
Hypothesis (SSRH) predicts that redundancy should
affect f0 in systematic ways.

In a study of spontaneous American English, [4]
found that contextual plausibility (i.e., a measure of
redundancy) affected f0 values as predicted by the
SSRH: lower redundancy yielded overall higher f0
values. On the other hand, discourse mention and
focus status showed less clear results, suggesting that
redundancy might affect f0 differently from duration.
Unlike the current study, however, lexical frequency
measures were not manipulated in that investigation.

Using data obtained under tightly controlled
experimental conditions, this study investigates the
relationship between acoustic salience measures
(prosodic prominence, boundary tone) and three
measures of language redundancy: lexical frequency,
bigram frequency (verb-adjective, adjective-noun),
and the ratio between those two bigram frequencies.

2. METHODS

2.1. Materials

The materials used in this study were originally
designed to examine the relationship between
duration and boundary strength in [7]. Recordings



were made in a sound-treated studio at the University
of Edinburgh, at a sampling rate of 44.1 kHz, 16-bit.
A total of 23 participants (14F) participated in the
reading task. All participants were students at the
University of Edinburgh and received compensation.

Fourteen sets of well-balanced quadruplets were
created for the study such as those exemplified in (1).
Each utterance in a set included a Verb-Adjective-
Noun (V-A-N) sequence. Each participant was
randomly presented with the target sentences twice.

Three frequency measures were used as indicators
for (non-acoustic) language redundancy:

a. Lexical frequency: The verbs and the nouns
selected had either frequent (f) or infrequent (i)
usages. The lexical frequencies were obtained from
the WebCelex’s Cobuild corpus [9]. For verbs, f
corresponds to a raw number of occurrences above
2000, whereas i indicates fewer than 200. For
nouns, f corresponds to raw frequencies over 3000,
whereas i indicates raw frequencies below 100.
A substantial buffer zone (V: 200-2000; N: 100-
3000) was deliberately selected to ensure that the
two categories were distant enough in their lexical
frequencies. Frequent and infrequent verbs in each
set both shared an identical rhyme, e.g. make vs rake
in (1). On the other hand, frequent and infrequent
nouns shared the same onsets and nuclei, e.g. fields
vs fiefs in (1). The adjective between the verb and
the noun was the same for all four in a quadruplet. In
the examples below, frequency codes are labelled as
subscripts on the verbs and the nouns.

(1) A quadruplet with frequent(f) and infrequent(i) verbs
and nouns

ff: Whatever you make f clean fields f should be a priority
fi: Whatever you make f clean fiefsi should be a priority
if: Whatever you rakei clean fields f should be a priority
ii: Whatever you rakei clean fiefsi should be a priority

All sentences in the quadruplets were syntactically
ambiguous. As a result, the adjective could be
prosodically grouped with either the preceding verb
(VA%N) or with the following noun (V%AN). No
punctuation was given in the experiment to indicate
prosodic phrasing to allow for participants’ unbiased
boundary placement. In the ICE-GB corpus [9] and
the Brown corpus [7], the V%AN structure is much
more frequent (ca. 77%) than the VA%N counterpart
(ca. 4%).

b. Bigram frequency: Word bigram frequency
was obtained through Google for the VA sequences
and the AN sequences respectively. The
bigram frequencies were categorized as "high" for
frequencies above 60% of the total range (9 to 45
million occurrences), and "low" for data below 40%.

A 20% buffer zone was kept to avoid borderline
frequency categories.

c. Ratio of bigram frequencies: The ratio of the
two bigram frequencies was calculated by dividing
the bigram frequency of VA by the bigram frequency
of AN, i.e. RATIO-BI = Freq(VA) /Freq(AN). The
methods for normalizing and parting data followed
the bigram frequencies’. The frequency ratio was
coded with the higher value between Freq(VA) and
Freq(AN).

2.2. Analysis

Participants were free to choose the parsing that they
preferred for each utterance, for instance by placing
the prosodic boundary either between V and AN
(V%AN) or between the VA and N (VA%N). We
only analyzed the utterances where all four utterances
and both repetitions in a set were produced with the
same prosodic phrasing. A total of 344 utterances
(produced by 11 speakers, from 11 quadruplets) were
then selected for the final dataset.

2.2.1. Data annotation

Segments in all utterances were automatically
labelled using a customised version of the Montreal
Forced Aligner [10]. Sonorant segments in target
words (V, A, N) of each utterance were labelled on
a different tier and used for data extraction. The
intonation of all utterances was labelled following
the original Tone and Break Indices [11] to inspect
pitch accents, phrase-tones and boundary tones used
in the production.

2.2.2. F0 extraction

Three analyses were conducted to examine language
redundancy effects on f0. All f0 values were
extracted using Praat [12] with a range of 75 Hz
to 400 Hz using "Get mean" function in Praat.

Sonorant intervals of each target word (e.g. /meI/
in "make", /li:n/ in "clean") were divided into three
equal portions for the analyses (henceforth initial
third, second third, final third). Our test words
were monosyllabic, and when pre-boundary, any
pitch accents, phrase-tone, and boundary tone would
all occur on the same syllable. Our rationale for
dividing the syllable into three was that the f0 of
the initial third might correspond more closely to
pitch-accent-related f0, and the f0 of the last third
might correspond more closely to boundary-related
f0. We acknowledge that dividing a syllable into
three parts based on f0 is a simplification and does
not capture the full complexity of intonation patterns.



However, we are using this division to provide some
preliminary insights.

2.2.3. Statistical analysis

The data were divided into two datasets according to
their prosodic grouping, i.e. V%AN (296 utterances
in total) and VA%N (48 utterances in total). The
data were analyzed using linear mixed effect models
[13] in R [14]. The base model only included the
predicted factors and their interactions, i.e. the lexical
frequencies of V and N and their interaction (V-
FREQ*N-FREQ). The interaction term was removed
when insignificant and if a reduced model was a
better fit (i.e. with a lower AIC). The duration
of sonorant interval (SONORANT-DUR) was also
added to test whether the f0 and duration are related.
A full model includes all relevant factors as the
main effects, including the lexical frequencies of
V and N and their interaction (V-FREQ*N-FREQ),
the duration of sonorant interval (SONORANT-DUR),
the bigram frequency for VA and AN respectively
(VA-FREQ, AN-FREQ), as well as the ratio between
VA and AN (RATIO-BI). SPEAKER and the index
of QUADRUPLET were used as random intercepts;
when models failed to converge, QUADRUPLET was
removed.

3. RESULTS

Tune types did not seem to be associated with word
frequency. In the V%AN dataset, the V and the N
mainly had a !H* pitch accent, with a falling or a flat
boundary. The A mostly had a H* pitch accent. The
most popular tune was V [!H* + H-L%] + A [H*] +
N [!H* + H-L%], which was used in 74 utterances
(30% of the dataset). This tune has a flat contour for
both three target words, making the entire utterance
fairly monotonous and flat. The VA%N dataset was
much smaller and the most used tune was V [!H*] +
A [!H* H-L%] + N [H* + H-L%]. A small percentage
of the tunes end with a H% boundary or edge tone,
including 28.5% in V, 6.4% in A, and 4.7% in N
across both datasets. These instances were excluded
from the analysis to keep the analysis unified and the
predictions consistent.

If SSRH holds for f0, we would expect a higher
f0 for infrequent words when the pitch accents and
boundary tones are high, and lower f0 when the tones
are low. Our prediction for downstepped H* was
unclear.

For the VA%N dataset, the results showed that
none of the frequency effects was significant,
possibly due to the small number of instances in this
dataset (48 instances). Therefore we will not report

further about this dataset.

3.1. Mean f0 of initial third
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Figure 1: A & C: Mean f0 of the 1st third of V
for each V-FREQ group (A) and for each N-FREQ
group (C). Red dots: mean f0. B & D: Schematized
lines by V-FREQ (B) and N-FREQ(D). V1/A1/N1:
mean f0 of the initial third in V/A/N; V3/A3/N3:
mean f0 of the final third in V/A/N.

In the V%AN dataset, the results showed two
significant predictors on the initial third of the verb
and the initial third of the noun. For the initial
third of the V, the mean f0 was lower when the V
was infrequent by a small margin than when it was
frequent (β = -7.989, SE = 3.106, t = -2.572, p <
0.05), as shown in Fig.1A. For the initial third of N,
the mean f0 was significantly higher when the noun
frequency was low (β = 4.342, SE = 2.091, t = 2.076,
p < 0.05), as shown in Fig.1C. Fig.1B divides the data
into two groups by V-FREQ, showing a difference of
around 5 Hz in the verb (V1). Similarly, Fig.1D
divides the data into two groups by N-FREQ, and
exhibits a difference of approximately 5 Hz in the
noun (N1). Both results indicated a link between the
F0 value for the first third of the sonorant interval and
word frequency, and thus provided certain insights
for SSRH. However, because the pitch accent on V1
was downstepped, we did not have a clear hypothesis
for the direction of the effect. The effect of mean f0
for N was in line with our expectations, i.e. higher f0
on a H* when N was infrequent.

3.2. Mean f0 of final third

Following the duration analysis in [7], in which the
effect of V-FREQ led to a significant increase of 15
ms in the pre-boundary V coda when the verb was
infrequent, we hypothesize that pre-boundary f0 is
also affected by the frequency of the pre-boundary
word.

In V%AN, the results show significant changes
brought by the frequency measures and other acoustic
measures on the V and the N respectively. For
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Figure 2: A: Mean f0 of the final third of V for
each V-FREQ group. Red dots show the mean f0
difference of each condition. B: Regression line
between the mean f0 and the duration of sonorant
segment in the final third of N V-FREQ. Grey area
indicates 95% confidence interval.

the final third of V, the mean f0 was significantly
lower when V-FREQ was infrequent (β = -8.448,
SE = 3.062, t = -2.759, p < 0.01), as shown in Fig.
2A. Fig.1B illustrates that when V is infrequent, the
boundary tone indicated by V3 on the yellow dotted
line is approximately 8 Hz lower than in the frequent
V condition (V3 on the blue solid line). This is
consistent with the SSRH prediction of a stronger
prosodic boundary, i.e. an even lower boundary tone,
after a less frequent word. For the final third of
N, the mean f0 was also lower as the duration of
the sonorant interval increased (β = -90.536, SE =
33.441, t = -2.707, p < 0.01), as in Fig. 2B. This clear
inverse correlation between temporal information and
f0 demonstrates further support for SSRH.

3.3. Global analysis
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Figure 3: Schematized lines for V%AN dataset
by verb-noun frequencies. V1/A1/N1: mean f0 of
the initial third in V/A/N; V3/A3/N3: mean f0 of
the final third in V/A/N. Grey dashed vertical lines
indicate prosodic boundaries.

Fig. 3 shows schematized lines using the mean f0
values of the initial and final thirds of V, A, and N
for both syntax types. Different lines demonstrate
different combinations of verb frequencies and noun
frequencies.

The results from the V%AN dataset showed a
mixed picture. While both the final third of V
(V3) and the initial third of N (N1) were inversely
correlated with frequency measures, i.e. the lower
the V-FREQ, the higher the f0 values, the mean f0
of the initial third of V (V1) changes positively with
the frequency measures, i.e. the f0 was lower when

the V-FREQ was low. There are several possibilities
that can explain V1’s pattern. The first cause for
the infrequent V (Vi) being lower in the initial third
(V1) than the frequent ones (Vf) may be that the
low boundary tone in the final third of the V (V3)
has brought down the f0 of the entire word since the
words are quite short in this dataset. An analysis of
the mean f0 of the whole verb showed that the f0 of
V was lower for the infrequent verb by around 5 Hz
than the frequent verbs as a whole (β = -5.303, SE
= 2.198, t = -2.413, p < 0.05). This also suggests
that the extra acoustic salience is indicated more by a
much lower boundary tone than a higher pitch accent.
Moreover, as mentioned previously, V having a !H*
pitch accent further complicated the issue. When the
pitch accent is a H*, the prediction is that the mean
f0 will be higher to increase prominence[4]; however,
the prediction is less clear when the pitch accent is a
!H* since its F0 value may be more easily influenced
by other surrounding tones. Another contributing
factor may be the general prosodic composition in
English. In Fig. 3B, the Vf_Nf line (red solid line)
is a typical intonation contour for a (!)H* + H-L% +
H* + H-L%, i.e. a high pitch accent with a falling
boundary and another pitch accent with a falling
boundary. In contrast, Vf_Ni seems more likely to
have a narrow focus (L+H*) on the infrequent noun.
The f0 contour on the verb seems to be affected by
the upcoming noun. This highlights the need for
more understanding of global phrasal patterns and
long-distance coarticulation in intonation.

4. DISCUSSION AND CONCLUSIONS

In summary, this study offers useful preliminary
observations regarding the relationship between
frequency measures and f0 in experimental English
data. In line with [4], the current results provide
some tentative support for the Smooth Signal
Redundancy Hypothesis and suggest that language
redundancy does affect f0 in some ways. It also
confirms that different acoustic salience measures,
such as duration and f0, influence each other in
a complimentary manner. This study lays the
foundation for future research on the correlation
of durational and f0 measures, and how they relate
to language redundancy. However, further insights
might emerge with an improved design.

5. ACKNOWLEDGEMENTS

We gratefully acknowledge funding from AHRC-
DFG Grant No. AH/W010801/1, to A. Turk , T.
Bögel and C. Lai.



6. REFERENCES

[1] Aylett, Matthew and Turk, Alice, “The smooth
signal redundancy hypothesis: A functional
explanation for relationships between redundancy,
prosodic prominence, and duration in spontaneous
speech,” Language and Speech, vol. 47, no. 1, pp.
31–56, 2004.

[2] Lindblom, Björn, “Explaining phonetic variation: A
sketch of the H&H theory,” in Speech Production
and Speech Modelling. Kluwer Academic
Publishers, 1990, pp. 403–439.

[3] Bell, Alan, Brenier, Jason, Gregory, Michelle,
Girand, Cynthia, and Jurafsky, Dan, “Predictability
effects on durations of content and function words
in conversational English,” Journal of Memory and
Language, vol. 60, no. 1, pp. 92–111, 2009.

[4] Turnbull, Rory, “The role of predictability in
intonational variability,” Language and Speech,
vol. 60, no. 1, pp. 123–153, 2017.

[5] A. Turk, “Does prosodic constituency signal relative
predictability? A Smooth Signal Redundancy
hypothesis,” Laboratory Phonology, vol. 1, no. 2,
pp. 227–262, 2010. [Online]. Available: https:
//doi.org/10.1515/labphon.2010.012

[6] Aylett, Matthew and Turk, Alice, “Language
redundancy predicts syllabic duration and the
spectral characteristics of vocalic syllable nuclei,”
The Journal of the Acoustical Society of America,
vol. 119, no. 5, pp. 3048–3058., 2006.

[7] T. Bögel and A. Turk, “Frequency effects and
prosodic boundary strength,” in International
Congress of Phonetic Sciences: ICPhS2019, 2019,
pp. 1014–1018.

[8] Ladd, D. Robert, Intonational Phonology.
Cambridge University Press, 2008.

[9] R. H. Baayen, R. Piepenbrock, and L. Gulikers,
“WebCelex,” 2001, online resource: http://celex.mpi.
nl/.

[10] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner,
and M. Sonderegger, “Montreal Forced Aligner:
Trainable Text-Speech Alignment Using Kaldi,” in
Proc. Interspeech 2017, 2017, pp. 498–502.

[11] M. E. Beckman, J. Hirschberg, and S. Shattuck-
Hufnagel, “The Original ToBI System and the
Evolution of the ToBI Framework,” in Prosodic
Typology: The Phonology of Intonation and
Phrasing. Oxford University Press, 2005.

[12] P. Boersma and D. Weenink, “Praat: doing phonetics
by computer [computer program]. Version 6.2.23,”
2022, online resource: http://www.praat.org/.

[13] D. Bates, M. Mächler, B. Bolker, and S. Walker,
“Fitting linear mixed-effects models using lme4,”
Journal of Statistical Software, vol. 67, pp. 1–48,
2015. [Online]. Available: https://www.jstatsoft.org/
index.php/jss/article/view/v067i01

[14] R Core Team, “R: A language and environment
for statistical computing,” Vienna, Austria, 2022.
[Online]. Available: http://www.r-project.org/


