DiaHClust: an iterative hierarchical clustering approach for identifying stages in language change

Christin Schätzle¹ and Hannah Booth²

¹University of Konstanz, ²Ghent University

1st International Workshop on Computational Approaches to Historical Language Change 2019

Motivation

- Historical linguistic investigations often make use of pre-determined periodization schemes to assess the progress of a change
- Pre-determined periodization schemes can be problematic:
 - little connection to the linguistic phenomenon under investigation
 - language-external influences (e.g., historical milestones)

DiaHClust

• Data-driven periodization methodology developed for the identification of stages in syntactic change

Universität

Konstanz

- Syntactic change is deeply interactional (e.g., Kroch 1989) assessing distributional properties of individual features is not sufficient for understanding these interactions
- We propose to use syntactic vectors to inform the periodization with existing knowledge about the language's syntactic system over time (cf. Zimmermann 2014, Ecay and Pintzuk 2016):
 - (1) Text $A = \{\text{feature}_1, \text{feature}_2, \dots, \text{feature}_n\}$ Text $B = \{\text{feature}_1, \text{feature}_2, \dots, \text{feature}_n\}$

Algorithm 2 DiaHClust methodology

- 1: **function** DIAHCLUST
- 2: repeat

3:

6:

8:

- often designed to be equidistant
- True trajectory of a change might be concealed, transitional periods obscured
- \rightarrow **Solution:** Data-driven methods for the identification of stages in language change

Example – Historical English

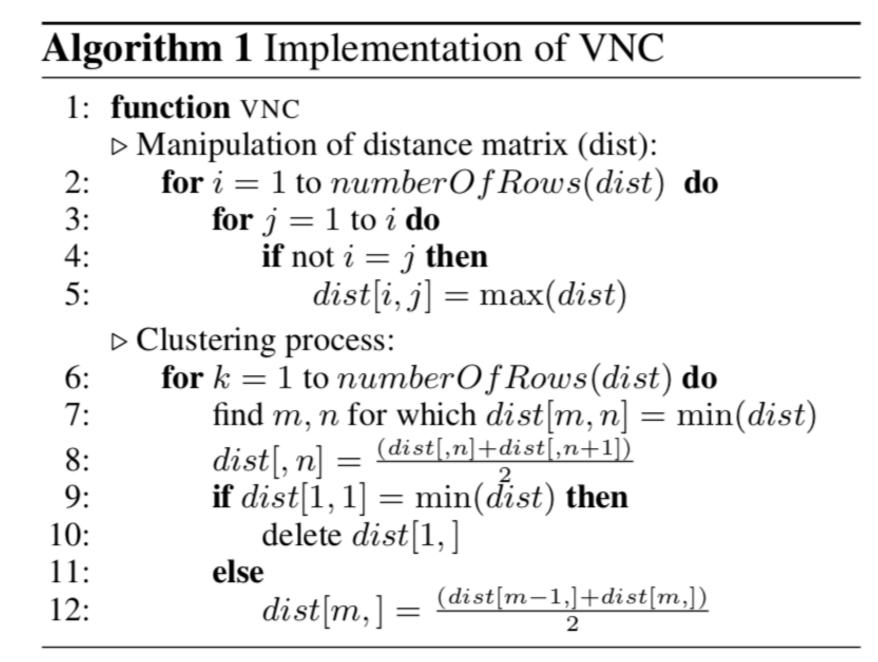
VNC

- Variability-based Neighbor Clustering (Gries and Hilpert 2008)
- Hierarchical clustering approach which is sensitive to the temporal ordering of data

1150.FIRSTGRAMMAR	1150.HOMILIUBOK	1210.JARTEIN	1210.THORLAKUR
0.6098	2.9137	5.8154	4.0936
0.0000	0.2749	0.0000	0.1949
19.5122	12.0396	32.2377	30.9942
39.6341	44.6399	45.5120	46.3938
56.0000	54.9296	47.0588	34.4828
3.0488	2.5838	0.6321	0.9747
	0.6098 0.0000 19.5122 39.6341 56.0000	0.60982.91370.00000.274919.512212.039639.634144.639956.000054.9296	0.60982.91375.81540.00000.27490.000019.512212.039632.237739.634144.639945.512056.000054.929647.0588

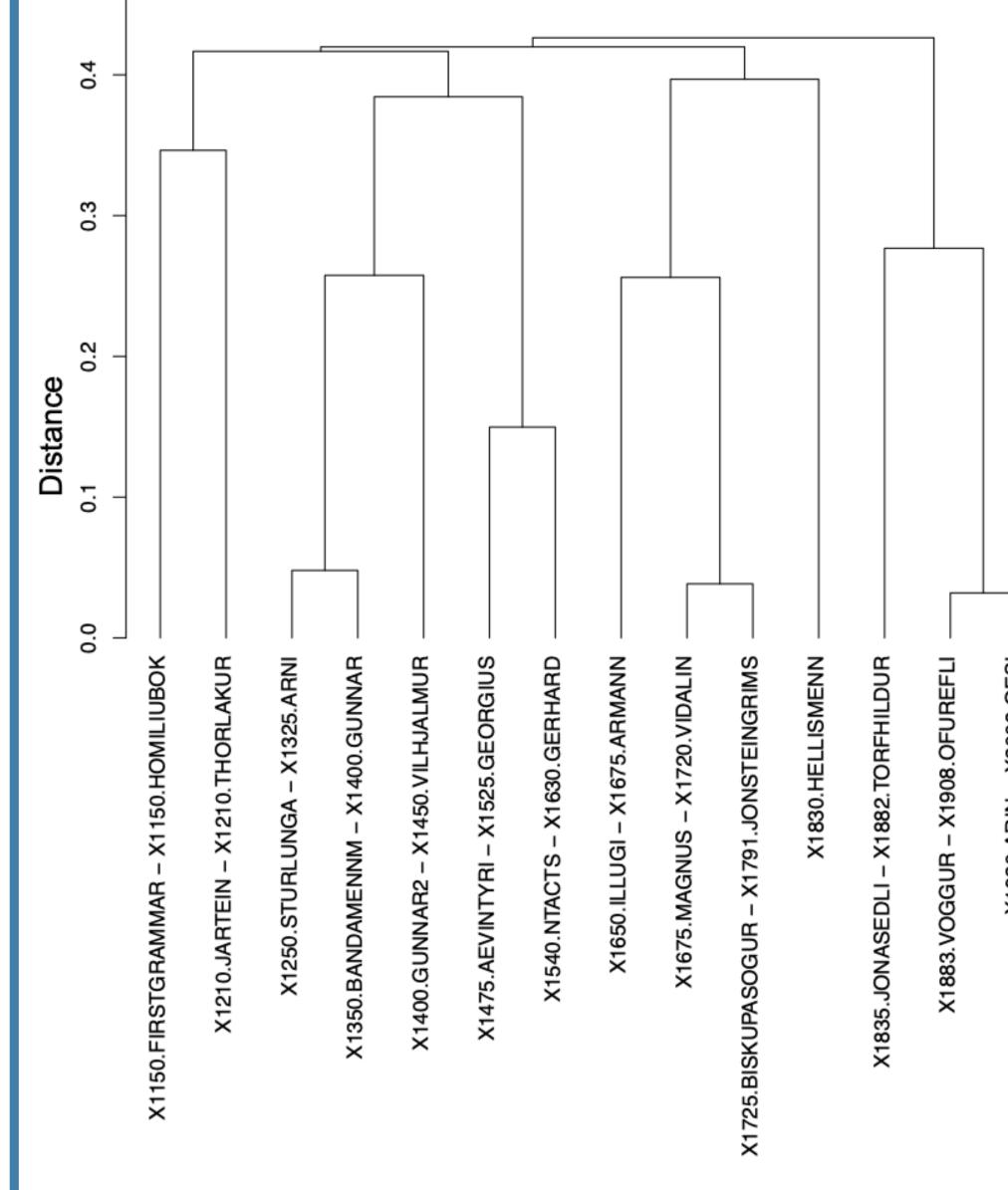
 $\begin{array}{l} aggregate(data)\\ dist = distanceMatrix(cor(data))\\ clust = vnc(dist)\\ plot(clust)\\ computeOptimalClustering(clust)\\ \textbf{until } numberOfClusters < 10 \end{array}$

UNIVERSITEIT


GENT

Example dataset showing texts as syntactic vectors

- DiaHClust is based on VNC, but employs an extra iterative layer of hierarchical clustering
 - This allows us to begin at text-level, tracing the clustering process until the final larger time stages are identified
 - We calculate silhouette coefficients (s(i)) to automatically identify the optimal clustering at each iteration which in turn informs the next clustering step
 - Information about the composition of clusters is given at each step of the iteration
- We implemented the DiaHClust methodology as an R package
 - \rightarrow Package and code available at https://github.com/christinschaetzle/diaHClust


Identifying stages in language change

- Case study on Icelandic the most conservative Germanic language; investigation of syntactic developments which are known to interact
- Standard periodization for Icelandic influenced by language-external factors (first translation of the
- Data with similar linguistic characteristics in the same cluster (i.e., period)
- Breaks between periods at points where the characteristics of the data show a quantifiable shift
- Developed to assess how individual linguistic features change across different contexts (distributional properties)
- Our implementation of the VNC approach:

- New Testament in the 16th century, equidistant periods)
- Extraction of changing features from IcePaHC (Wallenberg et al. 2011), a syntactically annotated corpus of historical Icelandic (1150-2008)

ightarrow dative subjects, expletives, V1 declaratives, subject position, VO order, Stylistic Fronting

• VNC clustering and calculation of silhouette values: 28 clusters for 61 IcePaHC texts \rightarrow DiaHClust until number of clusters < 10

• DiaHClust:

- $\ \ 6 \ time \ \ stages \rightarrow 1150-1210, \ 1250-1450, \\ 1475-1630, \ 1830-1830, \ 1835-2008$
- '1830.HELLISMENN' identified as outlier
- 5 time stages after outlier removal \rightarrow 1150–1210, 1250–1450, 1475–1630, 1650–1882, 1883–2008
- Average s(i) > 0.5 (coherent clustering)
- Genre effect carved out: mainly religious texts in stage 1475–1630
- DiaHClust periodization provides insights into

References

Hannah Booth, Christin Schätzle, Kersti Börjars, and Miriam Butt. 2017. Dative subjects and the rise of positional licensing in Icelandic. In Miriam Butt and Tracy Holloway King, editors, *Proceedings of the LFG'17 Conference, University of Konstanz*, pages 104–124. CSLI Publications, Stanford, CA.

Aaron Ecay and Susan Pintzuk. 2016. The syntax of Old English poetry and the dating of Beowulf. In Leonard Neidorf et al., eds, *Old English Philology: Studies in Honour of R.D. Fulk*, pages 219–258. D.S Brewer, Cambridge.

Stefan Th. Gries and Martin Hilpert. 2008. The identification of stages in diachronic data: variability-based neighbour clustering. *Corpora*, 3(1):59–81.

Anthony Kroch. 1989. Reflexes of grammar in patterns of language change. *Language Variation and Change*, 1:199–244.

Joel C. Wallenberg, Anton Karl Ingason, Einar Freyr Sigurðsson, and Eiríkur Rögnvaldsson. 2011. *Icelandic Parsed Historical Corpus (IcePaHC)*, version 0.9.

Richard Zimmermann. 2014. Dating hitherto undated Old English texts based on text-internal criteria. *Ms.*, University of Geneva.

Diachronically ordered texts from IcePaHC

DiaHClust results for syntactic change in IcePaHC

Traditional Periodization					
%V1	% DatSubj				
20.6	3.9				
19.9	3.2				
14.8	3.7				
18.4	3.8				
2.7	5.8				
	% V1 20.6 19.9 14.8 18.4	% V1% DatSubj20.63.919.93.214.83.718.43.8			

how IcePaHC texts behave with respect to syntactic phenomena

 DiaHClust reveals that syntactic change follows a more gradual trajectory in Icelandic than has been previously assumed

DiaHClust					
Time periods	% V1	% DatSubj			
1150-1210	23.7	3.4			
1250-1450	23.2	4.0			
1475-1630	6.9	2.6			
1650-1882	15.6	4.1			
1883-2008	2.3	5.5			
et al (2017) vs DiaHClust periods					

Proportion of V1-clauses/dative subjects in IcePaHC as per Booth et al. (2017) vs. DiaHClust periods