HistoBankVis: Visualizing Language Change

Christin Schätzle and Miriam Butt

ICEHL XX

Workshop on Visualisations in Historical Linguistics The University of Edinburgh

August 30, 2018

(ロ) (日) (日) (日) (日)

- SFB-TRR 161 "Quantitative Methods for Visual Computing"
- Project D02 "Evaluation Metrics for Visual Analytics in Linguistics" (Christin Schätzle)
 - Language change in Germanic and Indo-Aryan
 - How useful are visual analytic approaches to linguistic data?
 - Which visual variables and representations are most effective for which kind of problem/type of data?
- Project A03: Identification of subspaces/patterns in larger amounts of high-dimensional data (Michael Hund, Frederik Dennig)
- Historical linguistic data is high-dimensional and contains subspaces (e.g., interacting factors, relevant time periods) which need to be identified and understood.

chungsgemeinschaft

< ロ > < 同 > < 回 > < 回 > < 回 > <

Visual Analytics for Linguistics (LingVis)

Paradigms visualized

Acknowledgement and Thanks: **Frans Plank** originally inspired this LingVis enterprise!

• SFB-TRR 161

- The Konstanz LingVis group to date has experimented with many different visualizations.
- Work by Christian Rohrdantz, Thomas Mayer, Dominik Sacha, Menna El-Assady, Annette Hautli-Janisz — see our websites
- But most of it
 - word-based
 - phonological and/or morphological features
 - simple intonation contours
- Currently trying to take things to a different level: syntax

'Traditional' approach: Pairwise comparison of the relevant information across a number of data tables with different characteristics

Texts	Indefinite NPs		Definite NPs			NPs as proper names			
	OV	VO	% OV	OV	VO	% OV	OV	VO	% OV
14th century	28	33	45.9%	11	57	16.2%	3	8	27.3%
15th century	23	30	43.4%	10	25	28.6%	1	3	25.0%
16th century	15	28	34.9%	17	26	39.5%	1	5	16.7%
17th century	28	59	32.2%	18	50	26.5%	0	20	0.0%
18th century	6	28	17.6%	7	31	18.4%	1	7	12.5%
19th century	34	425	7.4%	14	351	3.8%	4	68	5.6%
	134	603	18.2%	77	540	12.5%	10	111	8.3%

Definiteness distribution of NPs across different word orders in the history of Icelandic (Hróarsdóttir, 2000)

SFB-TRR 161

- Diachronic investigations involve understanding highly complex interactions between various linguistic and extra-linguistic features and structures, factoring in a temporal dimension.
- The factors underlying a change are often unknown or at least highly debated among researchers.
- **Data sparsity** may derogate statistical calculations.
- Interesting patterns may stay hidden when a researcher investigates temporal episodes that are either too coarse or too fine grained.

Meaningful patterns are difficult to see in the forest of numbers.

Visual Analytics for Linguistics (LingVis)

Emmanuelle Moureaux 'Forest of Numbers'

General Aim: turn complex data sets and their relationships into at-a-glance visualizations complemented by the possibility to work interactively with different visual perspectives of the same complex relationships.

Visual Analytics for Linguistics (LingVis)

Visual Analytics

- "Analyze first, show the important, zoom, filter and analyze further, details on demand" (Keim et al. 2008, based on Shneiderman 1996)
- Compact presentation of large amounts of data
- Different levels of detail on demand (interactivity)
- Exploratory and confirmatory data analysis
- Iterative process of hypothesis testing and generation

・ロン ・個 と ・ 言 と ・ 言 と

HistoBankVis: Visualizing language change

- Generically applicable system for historical linguistic research.
- Flexible investigation of a potentially high number of interacting linguistic features stored in an SQL database.

Interactive Task-Based Feedback Loop

- Compact Matrix Visualization
 - Visualizes differences between selected dimensions across time
 - Measure of quality and "interestingness"
- Difference Histograms Visualization
- Dimension Interaction Visualization

SFB-TRR 161

Data Processing 🗘

- Concrete case study: interaction between subject case and word order in the history of Icelandic
- Reported word order changes in Icelandic:
 - change from OV to VO (Kiparsky 1996, Rögnvaldsson 1996, Hróarsdóttir 2000)
 - decrease of V1 (Franco 2008, Sigurðsson 1990, Butt et al. 2014)
- Research questions:
 - Which strategies are used to mark grammatical relations in Icelandic?
 - Do these strategies change diachronically?
 - Which functions do case and word order have at different stages of the language?

- ▶ 12th to 21st century all attested stages of Icelandic.
- ▶ 61 texts, 1 million words, different genres (not representative across centuries).
- Annotation based on Penn Treebank style (Marcus et al. 1993).
- Information about sentence types, constituents, word order, grammatical relations, tense, voice, and case.

(ID 1882.TORFHILDUR.NAR-FIC, .603))

SFB-TRR 161

Data Processing 🗘

- Extraction of relevant linguistic data dimensions from the annotation of IcePaHC via Perl scripts
 verb type, voice, word order, case and valency
- Information is collected for each matrix declarative sentence and mapped onto its sentence ID (gives information about the age, name, and genre of a text)
- \blacktriangleright Creation of well-structured CSV-file \rightarrow data is stored in a relational SQL database in HistoBankVis

ID	VERB	VERB_TYPE	MODAL/ASP	VOICE	WORD_ORD	VALENCY	SBJ_CASE	OBJ_CASE	OBJ2_CASE
1150.FIRSTGRAMMAR.SCI-LIN,.1	setja	VB	-	active	VSO1	trans	sbj_NOM	obj1_ACC	-
1150.FIRSTGRAMMAR.SCI-LIN,.2	setja	VB	-	active	O1VS	trans	sbj_NOM	obj1_ACC	-
1150.FIRSTGRAMMAR.SCI-LIN,.3	hafa	HV	þurfa	active	SVO1	trans	sbj_NOM	-	-
1150.FIRSTGRAMMAR.SCI-LIN,.4	rita	VB	-	active	VSO1	trans	sbj_NOM	obj1_ACC	-
1150.FIRSTGRAMMAR.SCI-LIN,.5	verða	RD	-	active	VS	intrans	sbj_GEN	-	-
1150.FIRSTGRAMMAR.SCI-LIN,.6	ganga	VB	-	active	VS	intrans	sbj_NOM	-	-
1150.FIRSTGRAMMAR.SCI-LIN,.7	rita	VB	-	active	VSO1	trans	sbj_NOM	obj1_ACC	-
1150.FIRSTGRAMMAR.SCI-LIN,.8	hafa	HV	-	active	VS	intrans	sbj_NOM	-	-
1150.FIRSTGRAMMAR.SCI-LIN,.9	taka	VB	-	active	O1VS	trans	sbj_NOM	obj1_ACC	-
1150.FIRSTGRAMMAR.SCI-LIN,.10	rita	VB	-	active	VSO2O1	ditrans	sbj_NOM	obj1_ACC	obj2_DAT
1150.FIRSTGRAMMAR.SCI-LIN,.11	taka	VB	-	passive	VS	intrans	sbj_NOM	-	-
1150.FIRSTGRAMMAR.SCI-LIN,.12	taka	VB	-	passive	VS	intrans	sbj_NOM	-	-
1150 FIRSTGRAMMAR SCI-LIN 13	taka	VR	-	nassive	VS	intrans	shi NOM	-	-
						< 🗆 🕨	< 🗇 🕨 🔹	∃ → < 3	 E

Task-based Filtering **T**

- Explore dataset before visualization
- Construction of a task-specific dataset
 - Filter for sentences with relevant *features* (i.e., cell entries)
 - Dimension selection (i.e., columns)

Sentence Filter	_			
From year 1750 to 1900	1	Edit Filter	Reset Filter	Apply Filter
Dimension	Feature	IS		
sbj_case	sbj_DAT	г		
word_order	wo_01\	/S		
Result Table	Exp	ort Records	Continue to	Visualizatior
ID	sbj_case	voice	word_order	verb
1790.FIMMBRAEDRA.NAR-SAG, 662	sbj_DAT	active	wo_O1VS	lika
1790.FIMMBRAEDRA.NAR-SAG,.382	sbj_DAT	active	wo_O1VS	vera
1791.JONSTEINGRIMS.BIO-AUT,154.1431	sbj_DAT	active	wo_O1VS	batna

Selected dimensions and features are analyzed in the visualization.

Task-based Filtering **T**

- Access to detailed information about each data point
- Furthers understanding of data quality
- Comparison of annotated values and extracted features

Export Record	ds Continu	ue to Visualization
ID	verb	word_order
1790.FIMMBRAEDRA.NAR-SAG,.662	líka	O1VS
1790.FIMMBRAEDRA.NAR-SAG,.382	vera	O1VS
1791.JONSTEINGRIMS.BIO-AUT,154.1431	batna	O1VS
1791.JONSTEINGRIMS.BIO-AUT,126.736	gleyma	O1VS

• SFB-TRR 161

Sentence: 1790.FIMMBRAEDRA.NAR-SAG,.662						
Dimension	Feature					
verb	líka					
verb_type	VB					
modal-aspectual	-					
voice	active					
word_order	O1VS					
valency	trans					
sbj_case	sbj_DAT					
obj_case	obj1_NOM					
obj2_case	-					
sbj_type	sbj_Q					
obj_type	obj1_N					
obj2_type	-					
genre	NAR					
Metadata:						

Analyzing Change over Time 📠

▶ Define/select time periods —<≡</p>

- Compact Matrix Visualization
- Difference Histograms Visualization Line
- Dimension Interaction Visualization

• SFB-TRR 161

Compact Matrix Visualization 🔍

- Visualizes differences between selected dimensions across time
- Comparison of periods along the diagonal
- Differences mapped onto a colormap
- Two comparison modes:
 - ▶ χ^2 -test
 - Statistical significance ($lpha \leq$ 0.05) lacksquare
 - Absence of necessary preconditions X
 - *p*-value is mapped to colormap (red p = 0, white $p \ge 0.2$)
 - Euclidean distance
 - Colormap indicates high (red) or low (white) distance
 - ▶ High Euclidean distance \rightarrow large difference (high significance)
- Measure of quality and "interestingness"

SFB-TRR 161

Difference Histograms Visualization 📠

- Histograms provide detailed views on individual features and their diachrony.
- Each time period is visualized as one bar chart/histogram.
- Dimensions are encoded via different colors.
- Each bar in the histogram corresponds to an individual feature.
- The height of a bar shows the percentage of sentences containing the respective feature in the given time period.

Difference Histograms Visualization 📠

- Differences between periods are visualized as a separate bar chart below each bar:
 - green \rightarrow feature increased
 - $\blacktriangleright \ {\rm red} \rightarrow {\rm feature} \ {\rm decreased}$
- Different comparison modes:
 - Previous period
 - First range
 - Last range
 - Average of all ranges
 - Average of previous ranges

• SFB-TRR 161

Difference Histograms Visualization 📠

• SFB-TRR 161

のQの ヨ (ヨ> (ヨ> (国> (ロ>))

19/35

Dimension Interaction Visualization

- Application of the Parallel Sets technique (Bendix et al. 2005, Kosara et al 2006)
 - Each feature is visualized as a proportion of an equally spaced vertical line.
 - The vertical lines represent the data dimensions.

• Each time period is visualized as one Parallel Sets visualization.

Parallel Sets

 allow for the flexible investigation of interactions between features from different data dimensions

 \longrightarrow Dimension Interaction Visualization

- Dimensions can be reordered via drag & drop.
- Features can be sorted according to size or alphabetically in an ascending or descending order.
- Mousing over a feature interaction provides information about the feature correspondence and the respective occurrence frequencies.

Hypothesis Generation and Feedback $\ensuremath{\mathbb{C}}$

• SFB-TRR 161

- Generation and testing of new hypotheses
- ► Feed the knowledge gained back into the system:
 - Change feature filters
 - Select different dimensions
 - Use different time periods
 - Process data anew
- Iterative analysis process
- Combination of knowledge-based and data-driven modeling

- On-line browser app: http://histobankvis.dbvis.de/
- Analysis steps and current views are encoded by unique identification URLs

- ightarrow Store and retrieve visualizations/analyses
- ightarrow Share data and knowledge with other researchers
- \rightarrow Supports research collaborations

Data upload

- IcePaHC dataset implemented as default
- Upload of own data
 - Tab-separated files
 - Must start with unique ID followed by a year date
 - \blacktriangleright Meta information, e.g., the corresponding full texts or parse trees, can be uploaded as well \rightarrow unique IDs map between the files

ID	YEAR	ATT_1	ATT_2	ATT_3
id_1	2000	no	а	num
id_2	2001	no	b	text
id_3	2002	no	b	text
id_4	2003	yes	С	num
id_5	2004	yes	С	text

⇒ Further instructions are provided on-line!

Work in progress

- Investigation of the interrelation between case and word order in other Penn parsed corpora
- ▶ HeliPaD: a parsed corpus of Old Saxon (Walkden 2015)
- Penn Parsed Corpora of Historical English
 - York-Toronto-Helsinki Parsed Corpus of Old English prose (YCOE, Taylor et al. 2003)
 - Penn-Helsinki Parsed Corpus of Middle English, second edition (PPCME2, Kroch & Taylor 2000)
 - Penn-Helsinki Parsed Corpus of Early Modern English (PPCEME, Kroch et al. 2004)
 - Penn-Helsinki Parsed Corpus of Modern British English (Kroch et al. 2010)

 \implies Test and improve data upload

 \implies Broaden scope of application of HistoBankVis

Demo http://histobankvis.dbvis.de/ (*Dimension Interactions not yet available on-line.)

- Dative objects are mostly pronouns, i.e., sentient/animate entities.
- Large tendency for animate dative arguments to precede the nominative argument.
- Yet, no diachronic perspective.
- \implies Penn Parsed Corpora of Historical English

- Problem: Corpora differ with respect to the annotation of grammatical relations and case marking (amongst other things)
- Lack of uniform standard (for Penn Treebanks overall)
- Difficult to automatically process the data

Issues of reproducibility and comparability of results!

Case marking, but no grammatical relations.

• SFB-TRR 161

No case marking, but grammatical relations.

• SFB-TRR 161

PPCEME2 annotation (Early Modern English) SFB-TRR 161

No case marking, but grammatical relations.

IcePaHC annotation

```
• SFB-TRR 161
```

Case marking **and** grammatical relations (and lemmas). Yet, case is annotated differently than in the YCOE.

Case marking **and** grammatical relations (and lemmas). Yet, case is again annotated differently.

Future Work

- Improve remaining flaws of data upload
- Automated solution for data processing
 - Integrate data processing into HistoBankVis pipeline
 - Build datasets via the filtering component directly from original corpus
 - Penn Treebanks and Universal Dendency Treebanks (CoNLL-format) as input
 - Develop standardized processing scheme
 - Integrate methods from the fields of data uncertainty and provenance
- Visual modeling of language change
 - Automatic identification of changing time periods
 - Automatically identify patterns of change, i.e., find the linguistic features involved in a change
 - S-curve model vs. cyclic patterns of change

Feedback? Suggestions for improvement?

http://histobankvis.dbvis.de/ christin.schaetzle@uni-konstanz.de miriam.butt@uni-konstanz.de